

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 1

Chapter 2

CUDA Programming Model

To a CUDA programmer, the computing system consists of a host that is a traditional

Central Processing Unit (CPU), such an Intel Architecture microprocessor in personal

computers today, and one or more devices that are massively parallel processors equipped

with a large number of arithmetic execution units. In modern software applications, there

are often program sections that exhibit rich amount of data parallelism, a property where

many arithmetic operations can be safely performed on program data structures in a

simultaneous manner. The CUDA devices accelerate the execution of these applications by

harvesting a large amount of data parallelism. Since data parallelism plays such an

important role in CUDA, we will first discuss the concept of data parallelism before

introducing the basic features of CUDA.

2.1. Data Parallelism
Many software applications that process a large amount of data, and thus incur long

execution time on today’s computers, are designed to model real-world, physical

phenomena. Images and video frames are snap shots of a physical world where different

parts of a picture capture simultaneous, independent physical events. Rigid body physics

and fluid dynamics model natural forces and movements that can be independently

evaluated within small time steps. Such independent evaluation is the basis of data

parallelism in these applications.

As we mentioned earlier, data parallelism refers to the program property where many

arithmetic operations can be safely performed on the data structures in a simultaneous

manner. We illustrate the concept of data parallelism with a matrix multiplication example

in Figure 2.1. In this example, each element of the product matrix P is generated by

performing a dot product between a row of input matrix M and a column of input matrix

N. This is illustrated in Figure 2.1, where the highlighted element of P is generated by

taking the dot product of the highlighted row of M and the highlighted column of N. Note

that the dot product operations for computing different P elements can be simultaneously

performed. That is, none of these dot products will affect the results of each other. For

large matrices, the number of dot products can be very large. For example, for a 1,000 X

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 2

1,000 matrix multiplication, there are 1,000,000 independent dot products, each involves

1,000 multiply and 1,000 accumulate arithmetic operations. Therefore, matrix

multiplication of large dimensions can have very large amount of data parallelism. By

executing many dot products in parallel, a CUDA device can significantly accelerate the

execution of the matrix multiplication over a tradition host CPU. The data parallelism in

real applications is not always as simple as that in our matrix multiplication example. In a

later chapter, we will discuss these more sophisticated forms of data parallelism.

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

Figure 2.1. Data parallelism in matrix multiplication.

2.2. CUDA Program Structure

A CUDA program consists of one or more phases that are executed on either the host

(CPU) or a device such as a GPU. The phases that exhibit little or no data parallelism are

implemented in host code. The phases that exhibit rich amount of data parallelism are

implemented in the device code. The program supplies a single source code encompassing

both host and device code. The NVIDIA C Compiler (NVCC) separates the two. The host

code is straight ANSI C code and is compiled with the host's standard C compilers and

runs as an ordinary process. The device code is written using ANSI C extended with

keywords for labeling data-parallel functions, called kernels, and their associated data

structures. The device code is typically further compiled by the NVCC and executed on a

GPU device. In situations where there is no device available or the kernel is more

appropriately executed on a CPU, one can also choose to execute kernels on a CPU. We

will discuss this option in more detail in Chapter mCUDA.

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 3

The kernel functions, or simply kernels, typically generate a large number of threads to

exploit data parallelism. In the matrix multiplication example, the entire matrix

multiplication computation can be implemented as a kernel where each thread is used to

compute one element of the output (P) matrix. In this example, the number of threads used

by the kernel is a function of the matrix dimension. For a 1,000 X 1,000 matrix

multiplication, the kernel that uses one thread to compute one P element would generate

1,000,000 threads when it is invoked. It is worth noting that CUDA threads are of much

lighter weight than the CPU threads. CUDA programmers can assume that these threads

take very few cycles to generate and schedule due to efficient hardware support. This is in

contrast with the CPU threads that typically take thousands of clock cycles to generate and

schedule.

The execution of a typical CUDA program is illustrated in Figure 2.2. The execution starts

with host (CPU) execution. When a kernel function is invoked, the execution is moved to a

device (GPU), where a large number of threads are generated to take advantage of

abundant data parallelism. All the threads that are generated by a kernel during an

invocation are collectively called a grid. Figure 2.2 shows the execution of two Girds of

threads. We will discuss how these grids are organized soon. When all threads of a kernel

complete their execution, the corresponding grid terminates, the execution continues on the

host until another kernel is invoked.

CPU Serial Code
Grid 0

. . .

. . .

GPU Parallel Kernel

KernelA<<< nBlk, nTid >>>(args);

Grid 1

CPU Serial Code

GPU Parallel Kernel

KernelB<<< nBlk, nTid >>>(args);

Figure 2.2. Execution of a CUDA program.

2.3 A Matrix Multiplication Example
At this point, it is worthwhile to introduce a code example that concretely illustrates the

CUDA program structure. Figure 2.3 shows a simple host code skeleton for matrix

multiplication. For simplicity, we assume that the matrices are square in their shapes with

the dimension of each matrix specified by a parameter width.

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 4

int main(void) {
1. // Allocate and initialize the matrices M, N, P

// I/O to read the input matrices M and N
….

2. // M * N on the device
MatrixMulOnDevice(M, N, P, width);

3. // I/O to write the output matrix P
// Free matrices M, N, P

…
return 0;
}

Figure 2.3 A simple CUDA host code skeleton

f or matrix multiplication.

The main program first allocates the M, N, and P matrices and then performs I/O to read in

M and N, in Part 1. These are ANSI C operations so we are not showing the actual code for

simplicity. The detailed code of the main function and some user defined ANSI C function

is shown in Appendix I. Similarly, after completing the matrix multiplication, the main

function performs I/O to write the product matrix P and the free all the allocated matrices.

The details of Part 2 are also shown in Appendix I. Part 2 is the main focus of our example.

It calls a function, MatrixMulOnDevice() to perform matrix multiplication on a device. We

will use more details of MatrixMulOnDevice() to explain the basic CUDA programming

model.

2.4. Device Memories and Data Transfer
In CUDA, host and devices have separate memory spaces. This reflects the reality that

devices are typically hardware cards that come with their own Dynamic Random Access

Memory (DRAM). For example, the NVIDIA GeForce 8800 GTX card that we will use as

the device through the book comes with 768 MB (million bytes, or mega-bytes) of DRAM.

In order to execute a kernel on a device, the programmer needs to allocate memory on the

device and transfer the pertinent data from the host memory to the allocated device

memory. Similarly, after device execution, the programmer needs to transfer result data

from device back to the host and free up the device memory that is no longer needed. The

CUDA runtime system provides Application Programming Interface (API) function calls

to perform these activities for use by the programmer.

Figure 2.4 shows an overview of the CUDA device memory model for programmers to

reason about the allocation, movement, and usage of the various memory types available

on a device. At the bottom of the picture, we see global memory and constant memory.

These are the memories that the host code can write (W) to and read (R) from. Constant

memory allow read-only access by the device; we will describe them in Chapter [CUA-

Memoy]. For now, we will focus on the use of Global memory. Note that the host memory

is not explicitly shown in Figure 2.4, but assumed to be contained in the host.

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 5

• Device code can:
– R/W per-thread registers

– R/W per-thread local memory

– R/W per-block shared memory

– R/W per-grid global memory

– Read only per-grid constant

memory

• Host code can

– R/W per grid global and

constant memories

(Device) Grid

Constant
Memory

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Figure 2.4 Overview of the CUDA device memory model.
The concept CUDA memory model is supported by the API functions that can be called by

CUDA programmers. Figure 2.5 shows the two most important API functions for

allocating and de-allocating device Global Memory. Function cudaMalloc() can be called

from the host code to allocate a piece of Global Memory for an object. The first parameter

for the cudaMalloc() function is the address of a pointer that needs to point to the allocated

object after a piece of Global Memory is allocated to it. The second parameter gives the

size of the object to be allocated.

The use of cudaMalloc() can be illustrated with a simple code example that continues from

Figure 2.3. Let’s assume that a programmer wishes to perform a 64x64 single-precision

matrix multiplication on the device and have a pointer variable Md that can point to the

first element of a single precision array. For clarity, we will end a variable with letter “d”

to indicate that the variable is used as an object in the device memory space. In the

following code example, we assume that Width is a variable or constant that is set to 64.

The programmer specifies that Md is the pointer that should point to the data region

allocated for the 64x64 matrix. Since Width is set at 64, the size of the allocated array will

be 64*64*(size of a single-precision floating number). After the computation, cudaFree()

is called with pointer Md as input to free the storage space for the 64x64 matrix from the

Global Memory.

float *Md

int size = Width * Width * sizeof(float);

cudaMalloc((void**)&Md, size);

…

cudaFree(Md);

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 6

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

• cudaMalloc()
– Allocates object in the device

Global MemoryGlobal Memory

– Two parameters

• Address of a pointer to the
allocated object

• Size of of allocated object

• cudaFree()
– Frees object from device Global

Memory

• Pointer to freed object

Figure 2.5 CUDA API Functions for Device Global
Memory Management.

Once a program has allocated device memory for the data objects, it can request that data

be transferred from the host to the device memory. This is accomplished by calling one of

the CUDA API functions for data transfer between memories. Figure 2.6 shows the API

function for such data transfer. The cudaMemcpy() function requires four parameters. The

first parameter is a pointer to the source data object to be copied. The second parameter

points to the destination location for the copy operation. The third parameter specifies the

number of bytes to be copied. The fourth parameter indicates the types of memory

involved in the copy: from host memory to host memory, from host memory to devise

memory, from device memory to host memory, and from device memory to device

memory. For example, the memory copy function can use used to copy data from one

location of the device memory to another location of the device memory.

For the matrix multiplication example, the host code calls the cudaMemcpy() function to

copy M and N matrices from the host memory to the device memory before the

multiplication and then to copy the P matrix from the device memory to the host memory

after the multiplication is done. Assume that M, P, Md, Pd and size have already been set

as we discussed before, the two function calls are shown below. Note that the two

symbolic constants, cudaMemcopyHostToDevice and cudaMemcopyDeviceToHost, are

recognized, predefined constants of the CUDA programming environment. Note that the

same function can be used to transfer data in both directions by properly ordering the

source and destination pointers and using the appropriate constant for the transfer type.

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

 cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 7

• cudaMemcpy()

– memory data transfer

– Requires four parameters

• Pointer to destination

• Pointer to source

• Number of bytes copied

• Type of transfer

– Host to Host

– Host to Device

– Device to Host

– Device to Device

• Transfer is asynchronous

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memor

y

Thread (0,
0)

Register
s

Local
Memor

y

Thread (1,
0)

Register
s

Block (1, 0)

Shared Memory

Local
Memor

y

Thread (0,
0)

Register
s

Local
Memor

y

Thread (1,
0)

Register
s

Host

Figure 2.6 CUDA API Functions for Data Transfer
Between Memories.

Now we are ready to complete the details of invoking a kernel in the matrix multiplication

example. As shown in Figure 2.3, the host code calls matrixMulOnDevice(), which is also

executed on the host. It is responsible for allocating device memory, performing data

transfers, and then activating the kernel that performs the actual matrix multiplication. We

often refer to this type of host code as the stub function for invoking a kernel. After the

matrix multiplication, matrixMulOnDevice() also At this point, the reader should be able

to write this function. We show the the function in Figure 2.7. The code consists of three

parts. The first part allocates device memory for Md, Nd, and Pd, the device counter part of

M, N, and P and transfer M to Md and N to Nd. The second part actually invokes the

kernel and will be described later. The third part reads the product from device memory

variable Pd to host memory variable P so that the value will be available to main(). It then

frees Md, Nd, and Pd from the device memory.

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 8

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

{
int size = Width * Width * sizeof(float);

1. // Load M and N to device memory

cudaMalloc(Md, size);

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

// Allocate P on the device

cudaMalloc(Pd, size);

2. // Kernel invocation code – to be shown later

…

3. // Read P from the device

cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices

cudaFree(Md); cudaFree(Nd); cudaFree (Pd);

}

Figure 2.7 The MatrixMulOnDevice() Function.

2.5. Kernel Functions and Threading

We now discuss the CUDA kernel functions and the organizations of threads generated by

the invocation of kernel functions. In CUDA, a kernel function specifies the code to be

executed by all threads of a parallel phase. Since all threads of a parallel phase execute the

same code, CUDA programming is an instance of the well-known Single-Program

Multiple-Data (SPMD) [algorithms:98:crc] parallel programming style, a popular

programming style for massively parallel computing systems.

Figure 2.8 shows the kernel function for matrix multiplication. The syntax is ANSI C with

some notable extensions. First, there is a CUDA specific keyword “__global__” in front of

the declaration of MatrixMulKernel(). This keyword indicates that the function is a kernel

and that it can be called from a host functions to generate a grid of threads.

The second notable extension to ANSI C is the keywords “threadIdx.x” and “threadIdx.y”

that refer to the thread indices of a thread. Note that all threads execute the same kernel

code. There needs to be a mechanism to allow them to distinguish themselves and direct

themselves towards the particular parts of the data structure they are designated to work

on. These keywords allow a thread to access the hardware registers associated with it at

runtime that provides the identity to the thread. For simplicity, we will refer to a thread as

ThreadthreadIdx.x, threadIdx.y. Note that the indices reflect a multi-dimensional organization for

the threads. We will come back to this point soon.

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 9

// Matrix multiplication kernel – thread specification

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{

// 2D Thread ID

int tx = threadIdx.x;

int ty = threadIdx.y;

// Pvalue stores the Pd element that is computed by the thread

float Pvalue = 0;

for (int k = 0; k < Width; ++k)

{

float Mdelement = Md[ty * Md.width + k];

float Ndelement = Nd[k * Nd.width + tx];

Pvalue += Mdelement * Ndelement;

}

// Write the matrix to device memory each thread writes one element

Pd[ty * Width + tx] = Pvalue;

}

Figure 2.8 The Matrix Multiplication Kernel Function.

In Figure 2.8, each thread uses the two indices to identify the row of Md and the column of

Nd to perform dot product operation in the for loop and to select the Pd element that it is

responsible for. It does so by calculating the starting positions in the input matrices based

on their unique block and thread coordinates. They then iterate through a loop to calculate

the result, and store it to memory. For example, Thread2,3 will perform a dot product

between row 2 of Md and column 3 of Nd and write the result into element (2,3) of Pd.

This way, the threads collectively generate all the elements of the Pd matrix.

When a kernel is invoked, or launched, it is executed as grid of parallel threads. In Figure

2.9, the launch of Kernel 1 creates Grid 1. Each CUDA thread grid typically comprises

thousands to millions of lightweight GPU threads per kernel invocation. Creating enough

threads to fully utilize the hardware often requires a large amount of data parallelism; for

example each element of a large array might be computed in a separate thread.

Threads in a grid are organized into a two-level hierarchy, as illustrated in Figure 2.9. For

simplicity, the number of threads shown in Figure 2.9 is set to be small. In reality, a grid

will typically consist of many more threads. At the top level, each grid consists of one or

more thread blocks. All blocks in a grid have the same number of threads. In Figure 2.9,

Grid 1 consists of 6 thread blocks that are organized into a 2x3 two-dimensional array of

threads. Each thread block has a unique two dimensional coordinate given by the CUDA

specific keywords blockIdx.x and blockIdx.y. All thread blocks must have the same

number of threads organized in the same manner. For simplicity, we assume that the kernel

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 10

in Figure 2.8 is launched with only one thread block. It will become clear soon that a

practical kernel will create much large number of thread blocks.

• A thread block is a
batch of threads that
can cooperate with
each other by:
– Synchronizing their

execution
• For hazard-free shared

memory accesses

– Efficiently sharing data
through a low latency
shared memory

• Two threads from two
different blocks cannot
cooperate

Host

Kernel

1

Kernel

2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

Courtesy: NDVIA

Figure 2.9 CUDA Thread Organization.

Each thread block is in turn organized as a three dimensional array of threads with a total

size of up to 512 threads. The coordinates of threads in a block are uniquely defined by

three thread indices: threadIdx.x, threadIdx.y, and threadIdx.z. Not all applications will use

all the three dimensions of a thread block. In Figure 2.9, each thread block uses only two

of the dimensions and is organized into a 3x5 array of threads. This gives Grid 1 a total of

15*6=90 threads. This is obviously a toy example.

In the matrix multiplication example, a grid is invoked to compute the product matrix. The

code in Figure 2.8 can use only one thread block organized as a 2-dimensional array of

threads in the grid. Since a thread block can have only up to 512 threads and each thread is

to calculate one element of the product matrix, the code can only calculate a product matrix

of up to 512 elements. This is obviously not acceptable. As we explained before, the

product matrix needs to have millions of elements in order to have sufficient amount of

data parallelism to benefit from execution on a device. We will come back to this point in

Chapter [CUDA threading model] and discuss the use of multiple blocks.

© David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008 11

// Setup the execution configuration

dim3 dimBlock(WIDTH, WIDTH);

dim3 dimGrid(1, 1);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd);

Figure 2.10 Example of host code that launches a kernel.

When the host code invokes a kernel, it sets the grid and thread block dimensions by

passing them as parameters. This is illustrated in Figure 2.10. Two structures of type dim3

are declared: the first is for blocks, which are defined as 16x16 groups of threads. There is

a thread computing each element of the result matrix. The final line of code invokes the

kernel. The special syntax between the name of the kernel function and the traditional C

parameters of the function is a CUDA extension to ANSI C. It provides the dimensions of

grids in terms of number of blocks and the dimensions of blocks in terms of number of

threads.

2.6 Summary
We have now finished an overview tour of the CUDA programming model. The matrix

multiplication program developed through the chapter is a fully functional CUDA

program. You can now compile the code and run the code using the CUDA runtime

system. In the next few chapters, we will give more complete description of each of the

main aspects of CUDA and begin to learn about the techniques for writing high

performance CUDA applications.

