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Example CFD problem: Heat Conduction in Plate

Figure: Physical domain: unit square heated from the top.

Steady-State 2D Heat Conduction (Laplace Equation)

∇2T =
∂2T

∂x2
+
∂2T

∂y2
= 0
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Discretization/Solution of Heat Conduction Equation

• Finite-Volume Method (Temperatures are cell-centered)
• Iterative solver: Red-Black Gauss-Seidel with SOR

(parallel algorithm)

Gauss-Seidel

Tn+1
p =

(an)(Tn
n ) + (as)(Tn

s ) + (ae)(Tn
e ) + (aw)(Tn

w)
ap

where
ap = an + as + ae + aw

and n=north, s=south, e=east, w=west

Successive-Overrelaxation (SOR)

Tn+1
p (accepted) = ωTn+1

p + (1− ω)Tn
p
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Red-Black Gauss-Seidel

• Color the grid like a checkboard.

• First update red cells from n to n+ 1 (only depends on black
cells at n).

• Then update black cells from n to n+ 1 (only depends on the
red cells at n+ 1)

Figure: Red-Black coloring scheme on internal grid cells and stencil.
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Developing the CUDA algorithm

• Experimented with various memory models
• Tried shared memory with “if” statements to handle B.C.s

for each sub-domain → slow
• Tried global memory where each thread loads its

nearest-neighbors → fast
• Currently using global memory
• Next step: texture memory
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CUDA algorithm on host

Programmed CPU (host) in C and GPU (device) in CUDA

Pseudo-Code for Laplace solver on host (CPU)
• dynamic memory allocation
• set I.C. and B.C.
• setup coefficients (an, as, ae, aw, ap)
• allocate device memory and copy all variables to device
• setup the execution configuration
• iteration loop: call red kernel, call black kernel each

iteration
• copy final results from device back to host
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CUDA algorithm on host: main.cu

Execution configuration
dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid(imx / BLOCK_SIZE, jmx / BLOCK_SIZE);

Iteration loop
for (iter=1; iter <= itmax; iter++) {

// Launch kernel to update red squares
red_kernel<<<dimGrid, dimBlock>>>
(T_old_d,an_d,as_d,ae_d,aw_d,ap_d,imx,jmx);

// Launch kernel to update black squares
black_kernel<<<dimGrid, dimBlock>>>
(T_old_d,an_d,as_d,ae_d,aw_d,ap_d,imx,jmx);

}
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CUDA algorithm on device: redkernel.cu

Relations between threads and mesh cells
// global thread indices (tx,ty)
int tx = blockIdx.x * BLOCK_SIZE + threadIdx.x;
int ty = blockIdx.y * BLOCK_SIZE + threadIdx.y;

// convert thread indices to mesh indices
row = (ty+1);
col = (tx+1);
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CUDA algorithm on device: redkernel.cu
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CUDA algorithm on device: redkernel.cu

Gauss-Seidel with SOR
if ( (row + col) % 2 == 0 ) { // red cell

float omega = 1.85;
float sum;
k = row*imax + col;

// perform SOR on red squares
sum = aw_d[k]*T_old_d[row*imax+ (col-1)] + \

ae_d[k]*T_old_d[row*imax+ (col+1)] + \
as_d[k]*T_old_d[(row+1)*imax+ col] + \
an_d[k]*T_old_d[(row-1)*imax+ col];

T_old_d[k]=T_old_d[k]*(1.0-omega)+omega*(sum/ap_d[k]);
}
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GPU Results

Figure: Solution of 2D heat conduction equation on unit square with
T=1 as top B.C. and T=0 along left, right, and bottom
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Governing Equations

Conservation of Mass
∂ρ

∂t
+∇ · ρu = 0

Conservation of Momentum

ρ
Du
Dt

= −∇p+∇ · ¯̄τ

Conservation of Energy

ρCp
DT

Dt
= βT

Dp

Dt
+∇ · (k∇T ) + Φ

where the viscous stress tensor is

¯̄τ = µ

(
∂ui

∂xj
+
∂uj

∂xi

)
+ δijλ(∇ · u)

A.F. Shinn CFD on GPUs



Introduction Discretization/Solution Parallel Solver CUDA algorithm Results LES on GPUs Conclusion

Discretization of Governing Equations

Fractional-Step Method

ρ
ûn+1 − un

∆t
= −Hn

ρ
un+1 − ûn+1

∆t
= −∇pn+1

∇ · ρun+1 = 0

Pressure-Poisson Equation can consume 70-95% of CPU time!

Boundary Conditions

un+1 = ub

∇pn+1 · n̂ = 0
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GPU research

• Developed Red-Black SOR solver for 2D heat conduction
equation for GPU in CUDA

• GPU code currently 17 times faster than CPU code

• Developing CUDA code for Large-Eddy Simulations

• Collaborating with Prof. Wen-mei Hwu in ECE dept.

• Also collaborating with Jonathan Cohen from NVIDIA

• Their guidance is greatly appreciated!
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