
Introduction Discretization/Solution Parallel Solver CUDA algorithm Results LES on GPUs Conclusion

Computational Fluid Dynamics (CFD) using
Graphics Processing Units

Aaron F. Shinn

Mechanical Science and Engineering Dept., UIUC

Accelerators for Science and Engineering Applications:
GPUs and Multicores

A.F. Shinn CFD on GPUs

Introduction Discretization/Solution Parallel Solver CUDA algorithm Results LES on GPUs Conclusion

Example CFD problem: Heat Conduction in Plate

Figure: Physical domain: unit square heated from the top.

Steady-State 2D Heat Conduction (Laplace Equation)

∇2T =
∂2T

∂x2
+
∂2T

∂y2
= 0

A.F. Shinn CFD on GPUs

Introduction Discretization/Solution Parallel Solver CUDA algorithm Results LES on GPUs Conclusion

Discretization/Solution of Heat Conduction Equation

• Finite-Volume Method (Temperatures are cell-centered)
• Iterative solver: Red-Black Gauss-Seidel with SOR

(parallel algorithm)

Gauss-Seidel

Tn+1
p =

(an)(Tn
n) + (as)(Tn

s) + (ae)(Tn
e) + (aw)(Tn

w)
ap

where
ap = an + as + ae + aw

and n=north, s=south, e=east, w=west

Successive-Overrelaxation (SOR)

Tn+1
p (accepted) = ωTn+1

p + (1− ω)Tn
p

A.F. Shinn CFD on GPUs

Introduction Discretization/Solution Parallel Solver CUDA algorithm Results LES on GPUs Conclusion

Red-Black Gauss-Seidel

• Color the grid like a checkboard.

• First update red cells from n to n+ 1 (only depends on black
cells at n).

• Then update black cells from n to n+ 1 (only depends on the
red cells at n+ 1)

Figure: Red-Black coloring scheme on internal grid cells and stencil.

A.F. Shinn CFD on GPUs

Introduction Discretization/Solution Parallel Solver CUDA algorithm Results LES on GPUs Conclusion

Developing the CUDA algorithm

• Experimented with various memory models
• Tried shared memory with “if” statements to handle B.C.s

for each sub-domain → slow
• Tried global memory where each thread loads its

nearest-neighbors → fast
• Currently using global memory
• Next step: texture memory

A.F. Shinn CFD on GPUs

Introduction Discretization/Solution Parallel Solver CUDA algorithm Results LES on GPUs Conclusion

CUDA algorithm on host

Programmed CPU (host) in C and GPU (device) in CUDA

Pseudo-Code for Laplace solver on host (CPU)
• dynamic memory allocation
• set I.C. and B.C.
• setup coefficients (an, as, ae, aw, ap)
• allocate device memory and copy all variables to device
• setup the execution configuration
• iteration loop: call red kernel, call black kernel each

iteration
• copy final results from device back to host

A.F. Shinn CFD on GPUs

Introduction Discretization/Solution Parallel Solver CUDA algorithm Results LES on GPUs Conclusion

CUDA algorithm on host: main.cu

Execution configuration
dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid(imx / BLOCK_SIZE, jmx / BLOCK_SIZE);

Iteration loop
for (iter=1; iter <= itmax; iter++) {

// Launch kernel to update red squares
red_kernel<<<dimGrid, dimBlock>>>
(T_old_d,an_d,as_d,ae_d,aw_d,ap_d,imx,jmx);

// Launch kernel to update black squares
black_kernel<<<dimGrid, dimBlock>>>
(T_old_d,an_d,as_d,ae_d,aw_d,ap_d,imx,jmx);

}

A.F. Shinn CFD on GPUs

Introduction Discretization/Solution Parallel Solver CUDA algorithm Results LES on GPUs Conclusion

CUDA algorithm on device: redkernel.cu

Relations between threads and mesh cells
// global thread indices (tx,ty)
int tx = blockIdx.x * BLOCK_SIZE + threadIdx.x;
int ty = blockIdx.y * BLOCK_SIZE + threadIdx.y;

// convert thread indices to mesh indices
row = (ty+1);
col = (tx+1);

A.F. Shinn CFD on GPUs

Introduction Discretization/Solution Parallel Solver CUDA algorithm Results LES on GPUs Conclusion

CUDA algorithm on device: redkernel.cu

A.F. Shinn CFD on GPUs

Introduction Discretization/Solution Parallel Solver CUDA algorithm Results LES on GPUs Conclusion

CUDA algorithm on device: redkernel.cu

Gauss-Seidel with SOR
if ((row + col) % 2 == 0) { // red cell

float omega = 1.85;
float sum;
k = row*imax + col;

// perform SOR on red squares
sum = aw_d[k]*T_old_d[row*imax+ (col-1)] + \

ae_d[k]*T_old_d[row*imax+ (col+1)] + \
as_d[k]*T_old_d[(row+1)*imax+ col] + \
an_d[k]*T_old_d[(row-1)*imax+ col];

T_old_d[k]=T_old_d[k]*(1.0-omega)+omega*(sum/ap_d[k]);
}

A.F. Shinn CFD on GPUs

Introduction Discretization/Solution Parallel Solver CUDA algorithm Results LES on GPUs Conclusion

GPU Results

Figure: Solution of 2D heat conduction equation on unit square with
T=1 as top B.C. and T=0 along left, right, and bottom

A.F. Shinn CFD on GPUs

Introduction Discretization/Solution Parallel Solver CUDA algorithm Results LES on GPUs Conclusion

Governing Equations

Conservation of Mass
∂ρ

∂t
+∇ · ρu = 0

Conservation of Momentum

ρ
Du
Dt

= −∇p+∇ · ¯̄τ

Conservation of Energy

ρCp
DT

Dt
= βT

Dp

Dt
+∇ · (k∇T) + Φ

where the viscous stress tensor is

¯̄τ = µ

(
∂ui

∂xj
+
∂uj

∂xi

)
+ δijλ(∇ · u)

A.F. Shinn CFD on GPUs

Introduction Discretization/Solution Parallel Solver CUDA algorithm Results LES on GPUs Conclusion

Discretization of Governing Equations

Fractional-Step Method

ρ
ûn+1 − un

∆t
= −Hn

ρ
un+1 − ûn+1

∆t
= −∇pn+1

∇ · ρun+1 = 0

Pressure-Poisson Equation can consume 70-95% of CPU time!

Boundary Conditions

un+1 = ub

∇pn+1 · n̂ = 0

A.F. Shinn CFD on GPUs

Introduction Discretization/Solution Parallel Solver CUDA algorithm Results LES on GPUs Conclusion

GPU research

• Developed Red-Black SOR solver for 2D heat conduction
equation for GPU in CUDA

• GPU code currently 17 times faster than CPU code

• Developing CUDA code for Large-Eddy Simulations

• Collaborating with Prof. Wen-mei Hwu in ECE dept.

• Also collaborating with Jonathan Cohen from NVIDIA

• Their guidance is greatly appreciated!

A.F. Shinn CFD on GPUs

	Introduction
	Discretization/Solution
	Parallel Solver
	CUDA algorithm
	Results
	LES on GPUs
	Conclusion

