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VSCSE Summer School 2008 

Accelerators for Science and Engineering 
Applications: GPUs and Multi-cores  

Lecture 1 
Introduction and Motivation 
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1 Based on slide 7 of S. Green, “GPU Physics,” SIGGRAPH 2007 GPGPU Course. http://www.gpgpu.org/s2007/slides/15-GPGPU-physics.pdf 

What is driving the many-
cores? 
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Design philosophies are different. 
•  The GPU is specialized for compute-intensive, 

massively data parallel computation (exactly what 
graphics rendering is about) 
–  So, more transistors can be devoted to data processing 

rather than data caching and flow control 

•  The fast-growing video game industry exerts 
strong economic pressure for constant innovation 

DRAM 
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ALU 
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CPU GPU 



© David Kirk/NVIDIA and Wen-mei W. Hwu

Urbana, Illinois, August 18-22, 2008


This is not your advisor’s parallel 
computer! 

•  Significant application-level speedup over uni-processor 
execution 

– No more “killer micros” 
•  Easy entrance  

–  An initial, naïve code typically get at least 2-3X speedup 

•  Wide availability to end users 
–  available on laptops, desktops, clusters, super-computers 

•  Numerical precision and accuracy 
–  IEEE floating-point and double precision 

•  Strong scaling roadmap 
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GPU Computing Scaling 
•  Laptops, desktops, workstations, 

servers, clusters – (cell phones? iPods?) 

•  UIUC has built a 16-node GPU cluster 
–  Peak performance 32.5 TFLOPS (SP) 
–  For science and engineering apps 

•  UIUC is planning a 32-node GPU cluster 
for Summer 2008 
–  Estimated peak performance 130 TFLOPS 

(SP) and 16 TFLOPS (DP) 

•  UIUC is planning a 400-GPU upgrade to 
the NSCA Abe production cluster in Fall 
2008 

GeForce 8800 

Tesla S870 

Tesla D870 
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How much computing power is 
enough?  

•  Each 10X jump in computing power motivates 
new ways of computing 
–  Many apps have approximations or omissions that 

arose from limitations in computing power 
–  Every 10x  jump in performance allows app 

developers to rethink their fundamental 
assumptions and strategies 

–  Example: graphics, medical imaging, physics 
simulation, etc. 

•  Each 2-3X allows addition new, innovative 
features to applications 
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Historic GPGPU Movement 

•  General Purpose computation using GPU 
in applications other than 3D graphics 
–  GPU accelerates critical path of application 

•  Data parallel algorithms leverage GPU attributes 
–  Large data arrays, streaming throughput 
–  Fine-grain SIMD parallelism 
–  Low-latency floating point (FP) computation 

•  Applications – see //GPGPU.org 
–  Game effects (FX) physics, image processing 
–  Physical modeling, computational engineering, matrix algebra, 

convolution, correlation, sorting 



© David Kirk/NVIDIA and Wen-mei W. Hwu

Urbana, Illinois, August 18-22, 2008


Historic GPGPU Constraints 
•  Dealing with graphics API 

–  Working with the corner cases of the 
graphics API 

•  Addressing modes 
–  Limited texture size/dimension 

•  Shader capabilities 
–  Limited outputs 

•  Instruction sets 
–  Lack of Integer & bit ops 

•  Communication limited 
–  No interaction between pixels 
–  No scatter store ability - a[i] = p 

Input Registers 

Fragment Program 

Output Registers 

Constants 

Texture 

Temp Registers 

per thread 
per Shader 
per Context 

        FB       Memory 

These have all changed 
with CUDA!
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What is the GPU Good at? 
•  The GPU is good at data-parallel processing 

•  The same computation executed on many data 
elements in parallel – low control flow overhead 
with high SP floating point arithmetic intensity 

•  Many calculations per memory access 
•  Currently also need high floating point to integer 

ratio 

•  High floating-point arithmetic intensity and many 
data elements mean that memory access latency 
can be hidden with calculations instead of big 
data caches – Still need to avoid bandwidth 
saturation! 
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CUDA - No more shader functions. 
•  Integrated CPU+GPU application C program 

–  Serial or modestly parallel C code executes on CPU 
–  Highly parallel SPMD kernel C code executes on GPU 

CPU Serial Code 
Grid 0 

. . . 

. . . 

GPU Parallel Kernel 
KernelA<<< nBlk, nTid >>>(args); 

Grid 1 
CPU Serial Code 

GPU Parallel Kernel  
KernelB<<< nBlk, nTid >>>(args); 
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It is about 
applications! 

Vision, Imaging, VACE,  HCI, Modeling and Simulation… 
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Science and Engineering Application 
Speedup 

App. Archit. Bottleneck Simult.  T Kernel X App X 

H.264 Registers,  global memory latency 3,936 20.2 1.5 

LBM Shared memory capacity 3,200 12.5 12.3 

RC5-72 Registers 3,072 17.1 11.0 

FEM Global memory bandwidth 4,096 11.0 10.1 

RPES Instruction issue rate 4,096 210.0 79.4 

PNS Global memory capacity 2,048 24.0 23.7 

LINPACK Global memory bandwidth, CPU-GPU 
data transfer 12,288 19.4 11.8 

TRACF Shared memory capacity 4,096 60.2 21.6 

FDTD Global memory bandwidth 1,365 10.5 1.2 

MRI-FHD Instruction issue rate 8,192 23.0 23.0 [HKR HotChips-2007] 
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Gridding1 

FFT 

Cartesian Scan Data 

(a) (b) 

(b) 

Massive Speedup can Revolutionize 
Apps 

Spiral scan data + Gridding + FFT:  
Faster scan reduces artifacts, averaging increases SNR. 

Reconstruction requires little computation. 

Iterative 
Reconstruction 

(c) 

1 Based on Fig 1 of Lustig et al, Fast Spiral Fourier Transform for Iterative MR Image Reconstruction, IEEE Int’l Symp. on Biomedical Imaging, 2004 

Spiral Scan Data 
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Chemo Therapy Monitoring 

6-12 weeks 
(hopefully) 
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FFT 

Cartesian Scan Data 

(a) 

MRI Reconstruction 

Spiral scan data + Iterative recon:  
Fast scan reduces artifacts, iterative reconstruction increases SNR. 

Reconstruction requires a lot of computation. 

Spiral Scan Data 

Iterative 
Reconstruction 

(c) 

Gridding 

(b) 

(b) 
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An Exciting Revolution - Sodium Map of 
the Brain 

•  Images of sodium in the brain 
–  Requires powerful scanner (9.4 Tesla) 
–  2000x less abundant than water, the main modality of MRI today 
–  Very large number of samples for increased SNR 
–  Requires high-quality reconstruction 

•  Study of brain-cell viability before anatomic changes occur 
in stroke and cancer treatment – within days! 

Courtesy of Keith Thulborn and Ian Atkinson, Center for MR Research, University of Illinois at Chicago 
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Advanced MRI Reconstruction 

Compute Q 

Acquire Data 

Compute FHd 

Find ρ 

•  Q: partial FHF and depends 
only on scanner setup 

•  FHd depends on scan data 
•  ρ found using linear solver 

–  FHF computed once per 
iteration; depends on Q, FHd 

–  λWHW incorporates 
anatomical constraints 

More than
 99.5% of time 

Haldar, et al, “Anatomically-constrained reconstruction from noisy data,” MR in Medicine. 

Reconstruction of a 643 image used to
 take days using MatLab! 
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for (p = 0; p < numP; p++) { 
  for (d = 0; d < numD; d++) { 
    exp = 2*PI*(kx[d] * x[p] + 
                ky[d] * y[p] + 
                kz[d] * z[p]); 
    cArg = cos(exp); 
    sArg = sin(exp); 
    rFhD[p] += rRho[d]*cArg – 
               iRho[d]*sArg; 
    iFhD[p] += iRho[d]*cArg + 
               rRho[d]*sArg; 
  } 
} 

__global__ void  
cmpFhD(float* gx, gy, gz, grFhD, giFhD) { 
  int p = blockIdx.x * THREADS_PB + threadIdx.x; 

  // register allocate image-space inputs & outputs 
  x = gx[p];  y = gy[p];  z = gz[p];   
  rFhD = grFhD[p];  iFhD = giFhD[p]; 

  for (int d = 0; d < SCAN_PTS_PER_TILE; d++) { 
    // s (scan data) is held in constant memory 
    float exp = 2 * PI * (s[d].kx * x +  
                          s[d].ky * y + 
                          s[d].kz * z); 
    cArg = cos(exp);  sArg = sin(exp); 
    rFhD += s[d].rRho*cArg – s[d].iRho*sArg; 
    iFhD += s[d].iRho*cArg + s[d].rRho*sArg; 
  } 
  grFhD[p] = rFhD;  giFhD[p] = iFhD; 
} 

Code 

Traditional C


CUDA Kernel
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Performance of FhD Computation 

S.S. Stone, et al,  “Accelerating Advanced MRI Reconstruction using  
GPUs,” ACM Computing Frontier Conference 2008, Italy, May 2008. 
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Final Data Arrangement and Fast 
Math 

Performance: 128 GFLOPS 
Time: 1.2 minutes 
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Results must be validated by domain 
experts. 
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CUDA for Multi-Core CPU 
•  A single GPU thread is too small for a CPU Thread 

–  CUDA emulation does this and performs poorly 

•  CPU cores designed for ILP, SIMD 
–  Optimizing compilers work well with iterative loops 

•  Turn GPU thread blocks from CUDA into iterative CPU loops 
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Bigger Picture Performance Results 

Application C on single 
core CPU 

Time 

CUDA on 4-
core CPU 

Time 

Speedup* CUDA on G80 
Time 

MRI-FHD ~1000s 230s ~4x 8.5s 

CP 180s 45s 4x .28s 

SAD 42.5ms 25.6ms 1.66x 4.75ms 

MM (4Kx4K) 7.84s** 15.5s 3.69x 1.12s 

•  Consistent speed-up over hand-tuned single-thread code 
•  Best optimizations for GPU and CPU not always the same 

*Over hand-optimized CPU 
**Intel MKL, multi-core execution 
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A Great Opportunity for Many 

•  GPU parallel computing allows 
–  Drastic reduction in “time to discovery” 
–  1st principle-based simulation at meaningful scale 
–  New, 3rd paradigm for research: computational 

experimentation 

•  The “democratization” of power to discover 
•  $2,000/Teraflop SPFP in personal computers today  
•  $5,000,000/Petaflops DPFP in clusters in two years 
•  HW cost will no longer be the main barrier for big science  
•  You will make the difference! 
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Course Objective 

•  To learn high-performance parallel programming 
–  Computational thinking – formulating domain problems 

into computational models 
–  Understanding hardware strength and limitation 
–  Understand optimizations 

•  To maintain reliability and supportability 
–  Using simple and disciplined parallel execution models 

•  To achieve scalability 
–  Achieving high-performance on current and future 

hardware platforms with the same code  
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Agenda 

Monday, August 18: 
•  11:00 AM – 1:00 PM  Registration, Lunch 
•  12:50-1:00 PM   Welcome 
•  1:00 – 2:15 PM   Introduction 
•  2:15 – 2:30 PM   Break 
•  2:30 – 3:45 PM   CUDA Basics 
•  4:00 – 5:00 PM   Multidisciplinary Panel 

      (NCSA Auditorium) 

•  5:30 – 6:30 PM   Reception (NCSA Lobby) 
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Agenda 

Tuesday, August 19: 
•  8:00 – 9:00 AM   Breakfast 
•  9:00 – 10:15 AM   CUDA Threading Model 
•  10:15 – 10:30 AM  Break 
•  10:30 – 11:45 AM  CUDA Memory Model 
•  12:00 – 1:00 PM   Lunch 
•  1:00 – 3:45 PM   Hands-on Lab 
•  4:00 – 5:00 PM   Keynote (NCSA Auditorium) 
•  5:30 – 6:30 PM   Reception (NCSA Lobby) 
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Agenda 
Wednesday, August 20: 
•  8:00 – 9:00 AM   Breakfast 
•  9:00 – 10:15 AM   Performance 

Considerations 
•  10:15 – 10:30 AM  Break 
•  10:30 – 11:45 AM  Floating-Point Considerations 
•  12:00 – 1:00 PM   Lunch 
•  1:00 – 3:45 PM   Hands-on Lab 
•  4:00 – 5:00 PM   Keynote (NCSA Auditorium) 
•  5:30 – 6:30 PM   Reception (NCSA Lobby) 
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Agenda 

Thursday, August 21: 
•  8:00 – 9:00 AM   Breakfast 
•  9:00 – 10:15 AM   Case Study: Quantitative 

MRI 
•  10:15 – 10:30 AM  Break 
•  10:30 – 11:45 AM  Case Study: Molecular Dynamics 
•  12:00 – 1:00 PM   Lunch 
•  1:00 – 3:45 PM   Hands-on Lab 
•  4:00 – 5:00 PM   Keynote (NCSA Auditorium) 
•  5:30 – 6:30 PM   Reception (NCSA Lobby) 
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Agenda 

Friday, August 22: 
•  8:00 – 9:00 AM   Breakfast 
•  8:30 – 9:45 AM   Wrap up and next steps 
•  9:45-10:15    Student Feedback 
•  10:15-10:30   Break 
•  10:30 AM – 12:30 PM  Individual and/or group sharing 

    of projects or ideas (quick and   
  informal) 

•  12:30    Box Lunch, Adjourn 


