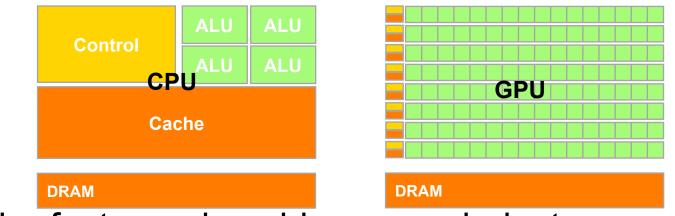

VSCSE Summer School 2008

Accelerators for Science and Engineering Applications: GPUs and Multi-cores

Lecture 1 Introduction and Motivation


What is driving the manycores?

¹Based on slide 7 of S. Green, "GPU Physics," SIGGRAPH 2007 GPGPU Course. http://www.gpgpu.org/s2007/slides/15-GPGPU-physics.pdf

Design philosophies are different.

- The GPU is specialized for compute-intensive, massively data parallel computation (exactly what graphics rendering is about)
 - So, more transistors can be devoted to data processing rather than data caching and flow control

 The fast-growing video game industry exerts strong economic pressure for constant innovation

This is not your advisor's parallel computer!

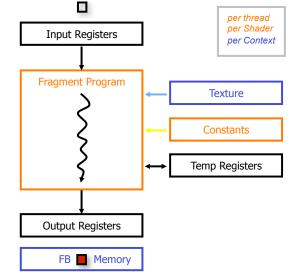
- Significant application-level speedup over uni-processor execution
 - No more "killer micros"
- Easy entrance
 - An initial, naïve code typically get at least 2-3X speedup
- Wide availability to end users
 - available on laptops, desktops, clusters, super-computers
- Numerical precision and accuracy
 - IEEE floating-point and double precision
- Strong scaling roadmap

GPU Computing Scaling

- Laptops, desktops, workstations, servers, clusters – (cell phones? iPods?)
- UIUC has built a 16-node GPU cluster
 - Peak performance 32.5 TFLOPS (SP)
 - For science and engineering apps
- UIUC is planning a 32-node GPU cluster for Summer 2008
 Tesla I
 - Estimated peak performance 130 TFLOPS (SP) and 16 TFLOPS (DP)
- UIUC is planning a 400-GPU upgrade to the NSCA Abe production cluster in Fall 2008

How much computing power is enough?

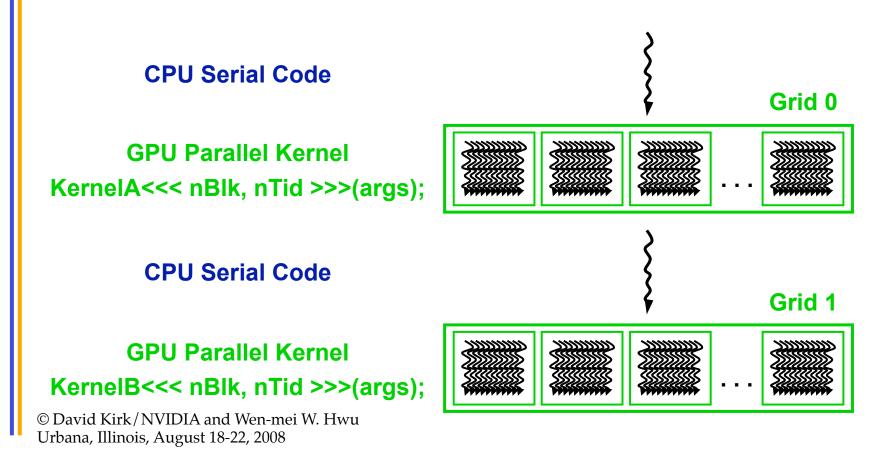
- Each 10X jump in computing power motivates new ways of computing
 - Many apps have approximations or omissions that arose from limitations in computing power
 - Every 10x jump in performance allows app developers to rethink their fundamental assumptions and strategies
 - Example: graphics, medical imaging, physics simulation, etc.
- Each 2-3X allows addition new, innovative features to applications


Historic GPGPU Movement

- General Purpose computation using GPU in applications other than 3D graphics
 - GPU accelerates critical path of application
- Data parallel algorithms leverage GPU attributes
 - Large data arrays, streaming throughput
 - Fine-grain SIMD parallelism
 - Low-latency floating point (FP) computation
- Applications see //GPGPU.org
 - Game effects (FX) physics, image processing
 - Physical modeling, computational engineering, matrix algebra, convolution, correlation, sorting

Historic GPGPU Constraints

- Dealing with graphics API
 - Working with the corner cases of the graphics API
- Addressing modes
 - Limited texture size/dimension
- Shader capabilities
 - Limited outputs
- Instruction sets
 - Lack of Integer & bit ops
- Communication limited
 - No interaction between pixels
 - No scatter store ability a[i] = p

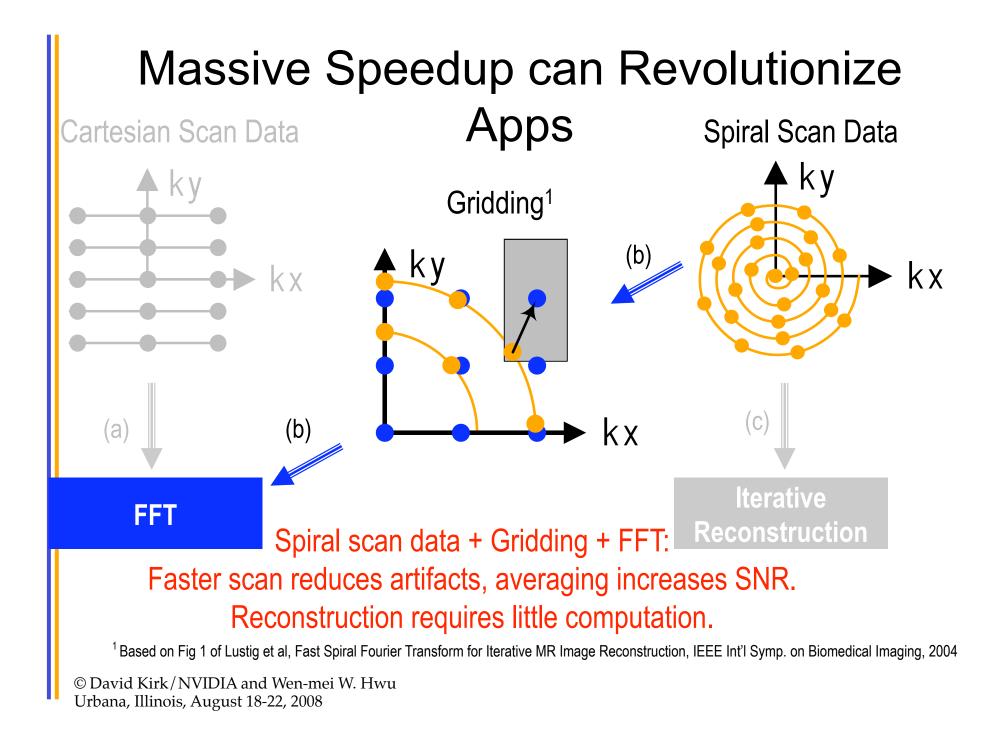

These have all changed with CUDA!

What is the GPU Good at?

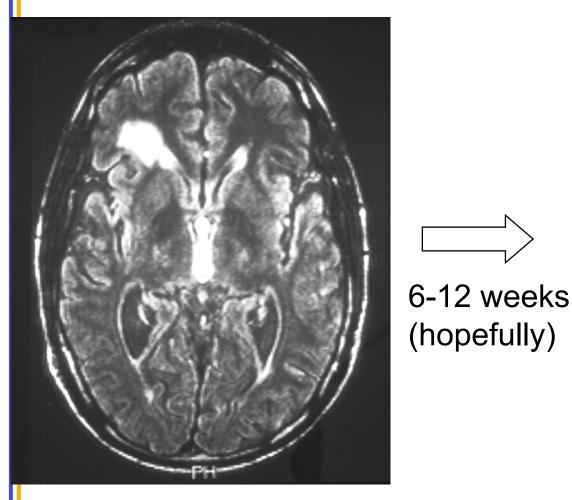
- The GPU is good at data-parallel processing
 - The same computation executed on many data elements in parallel – low control flow overhead with high SP floating point arithmetic intensity
 - Many calculations per memory access
 - Currently also need high floating point to integer ratio
- High floating-point arithmetic intensity and many data elements mean that memory access latency can be hidden with calculations instead of big data caches – Still need to avoid bandwidth saturation!

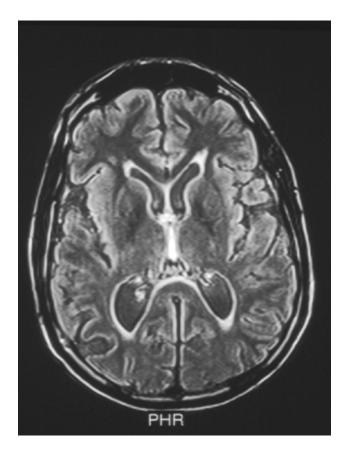
CUDA - No more shader functions.

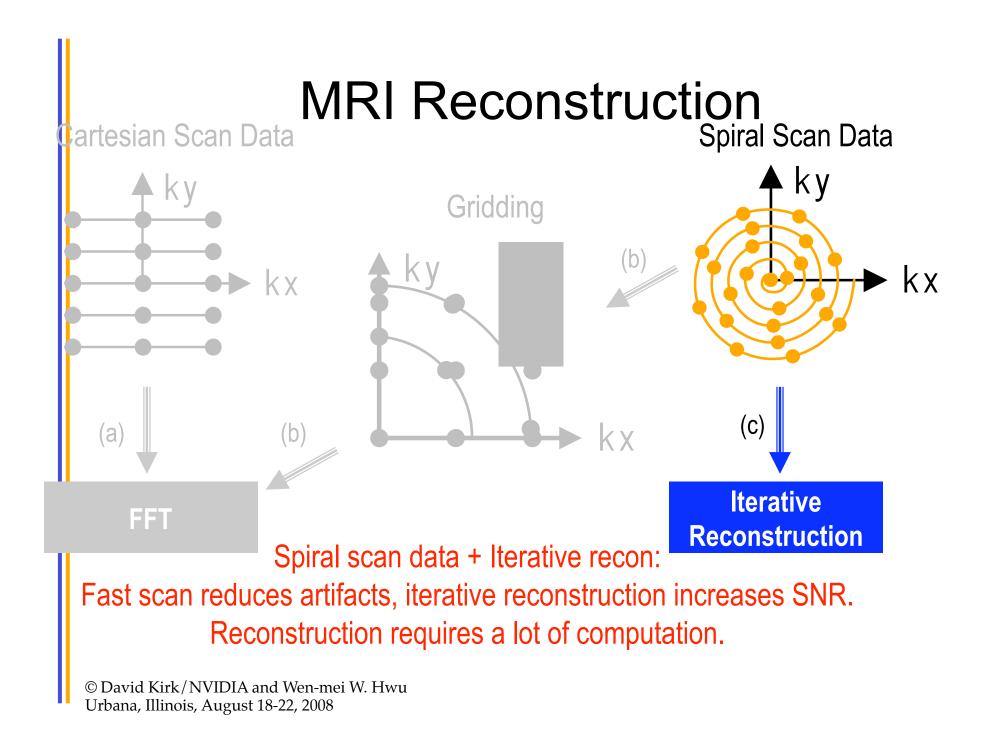
- Integrated CPU+GPU application C program
 - Serial or modestly parallel C code executes on CPU
 - Highly parallel SPMD kernel C code executes on GPU

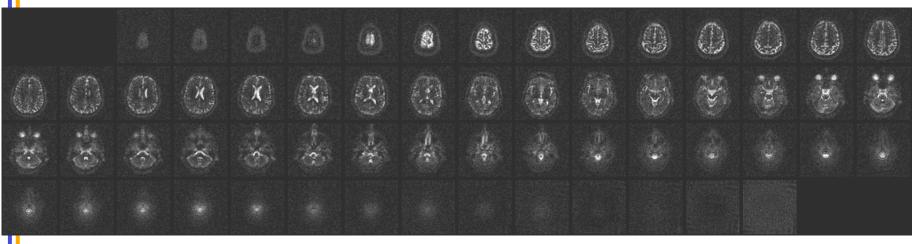


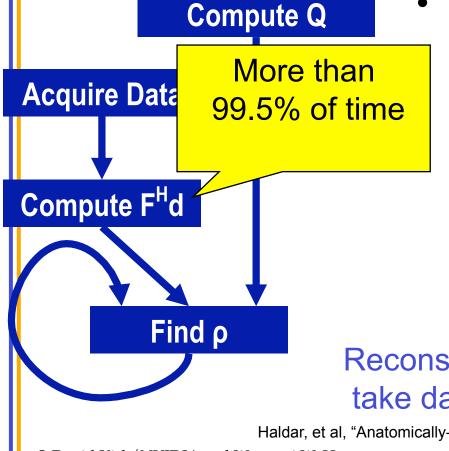
It is about applications!


Vision, Imaging, VACE, HCI, Modeling and Simulation...


Science and Engineering Application Speedup


App.	Archit. Bottleneck	Simult. T	Kernel X	Арр Х
H.264	Registers, global memory latency	3,936	20.2	1.5
LBM	Shared memory capacity	3,200	12.5	12.3
RC5-72	Registers	3,072	17.1	11.0
FEM	Global memory bandwidth	4,096	11.0	10.1
RPES	Instruction issue rate	4,096	210.0	79.4
PNS	Global memory capacity	2,048	24.0	23.7
LINPACK	Global memory bandwidth, CPU-GPU data transfer	12,288	19.4	11.8
TRACF	Shared memory capacity	4,096	60.2	21.6
FDTD	Global memory bandwidth	1,365	10.5	1.2
© David Rick Of China Urbana, Illinois, August	Instruction issue rate net Wen-mei W. Hwu 18-22, 2008	8,192	23.0	23.0


Chemo Therapy Monitoring



An Exciting Revolution - Sodium Map of

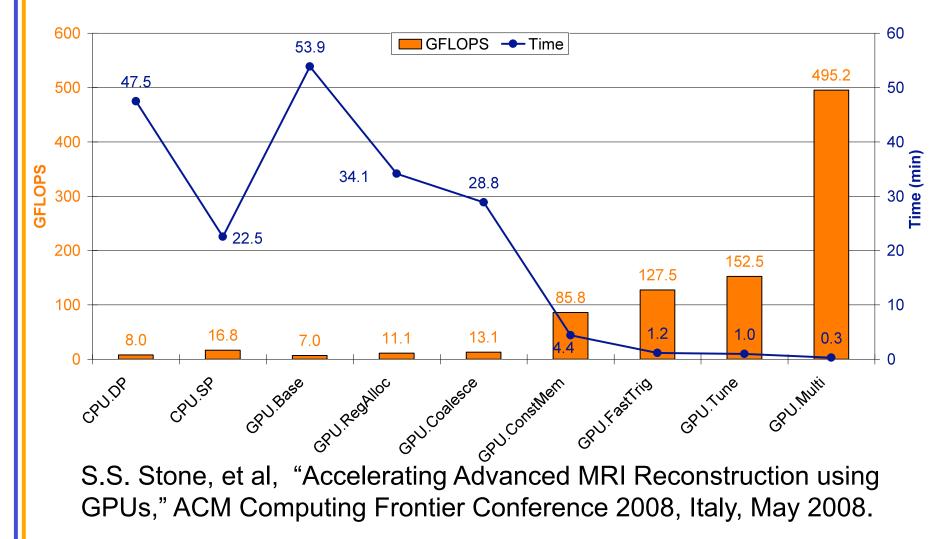
- Images of sodium in the brain
 - Requires powerful scanner (9.4 Tesla)
 - 2000x less abundant than water, the main modality of MRI today
 - Very large number of samples for increased SNR
 - Requires high-quality reconstruction
- Study of brain-cell viability before anatomic changes occur in stroke and cancer treatment — within days! Courtesy of Keith Thulborn and Ian Atkinson, Center for MR Research, University of Illinois at Chicago

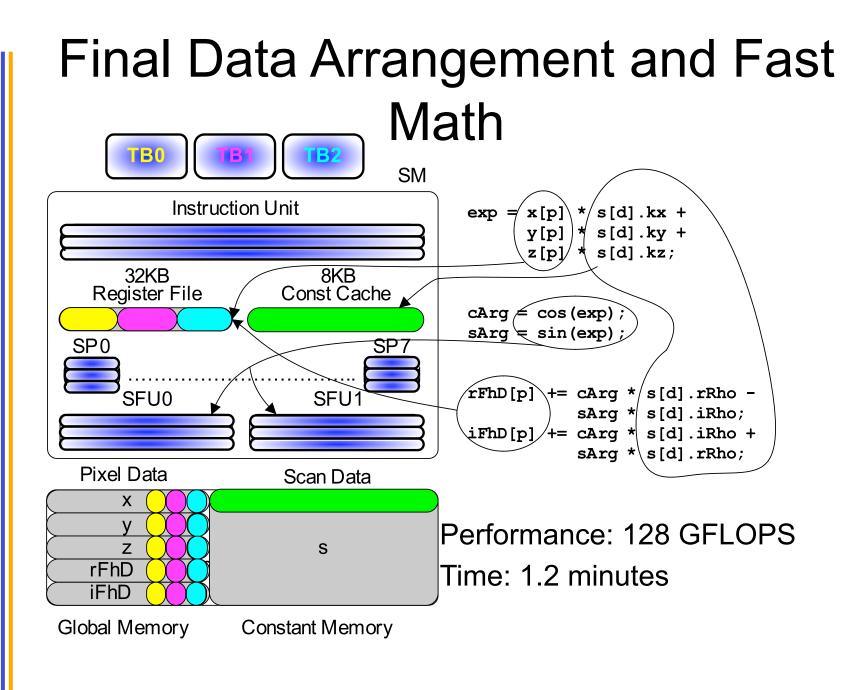
Advanced MRI Reconstruction $(F^{H}F + \lambda W^{H}W)\rho = F^{H}d$

© David Kirk/NVIDIA and Wen-mei W. Hwu Urbana, Illinois, August 18-22, 2008

- Q: partial F^HF and depends only on scanner setup
 F^Hd depends on scan data
 ρ found using linear solver
 - F^HF computed once per iteration; depends on Q, F^Hd
 - λW^HW incorporates anatomical constraints

Reconstruction of a 64³ image used to take days using MatLab!

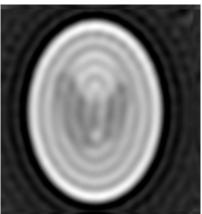

Haldar, et al, "Anatomically-constrained reconstruction from noisy data," MR in Medicine.


Code

Traditional C

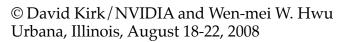
CUDA Kernel

Performance of FhD Computation



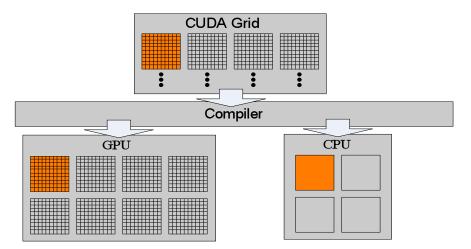
Results must be validated by domain experts.

True


Gridded

CPU.DP

CPU.SP



GPU.Tune

CUDA for Multi-Core CPU

- A single GPU thread is too small for a CPU Thread
 - CUDA emulation does this and performs poorly
- CPU cores designed for ILP, SIMD
 - Optimizing compilers work well with iterative loops
- Turn GPU thread blocks from CUDA into iterative CPU loops

Bigger Picture Performance Results

- Consistent speed-up over hand-tuned single-thread code
- Best optimizations for GPU and CPU not always the same

Application	C on single core CPU Time	CUDA on 4- core CPU Time	Speedup*	CUDA on G80 Time
MRI-FHD	~1000s	230s	~4x	8.5s
CP	180s	45s	4x	.28s
SAD	42.5ms	25.6ms	1.66x	4.75ms
MM (4Kx4K)	7.84s**	15.5s	3.69x	1.12s

*Over hand-optimized CPU

**Intel MKL, multi-core execution

A Great Opportunity for Many

• GPU parallel computing allows

- Drastic reduction in "time to discovery"
- 1st principle-based simulation at meaningful scale
- New, 3rd paradigm for research: computational experimentation
- The "democratization" of power to discover
 - \$2,000/Teraflop SPFP in personal computers today
 - \$5,000,000/Petaflops DPFP in clusters in two years
 - HW cost will no longer be the main barrier for big science
 - You will make the difference!

Course Objective

- To learn high-performance parallel programming
 - Computational thinking formulating domain problems into computational models
 - Understanding hardware strength and limitation
 - Understand optimizations
- To maintain reliability and supportability
 - Using simple and disciplined parallel execution models
- To achieve scalability
 - Achieving high-performance on current and future hardware platforms with the same code

Monday, August 18:

- 11:00 AM 1:00 PM
- 12:50-1:00 PM
- 1:00 2:15 PM
- 2:15 2:30 PM
- 2:30 3:45 PM
- 4:00 5:00 PM
- 5:30 6:30 PM

Registration, Lunch Welcome Introduction Break CUDA Basics Multidisciplinary Panel (NCSA Auditorium) Reception (NCSA Lobby)

Tuesday, August 19:

- 8:00 9:00 AM
- 9:00 10:15 AM
- 10:15 10:30 AM
- 10:30 11:45 AM
- 12:00 1:00 PM
- 1:00 3:45 PM
- 4:00 5:00 PM
- 5:30 6:30 PM

Breakfast CUDA Threading Model Break CUDA Memory Model Lunch Hands-on Lab Keynote (NCSA Auditorium) Reception (NCSA Lobby)

Wednesday, August 20:

- 8:00 9:00 AM
- 9:00 10:15 AM Considerations
- 10:15 10:30 AM
- 10:30 11:45 AM
- 12:00 1:00 PM
- 1:00 3:45 PM
- 4:00 5:00 PM
- 5:30 6:30 PM

Breakfast Performance

Break

Floating-Point Considerations Lunch Hands-on Lab Keynote (NCSA Auditorium) Reception (NCSA Lobby)

<u>Thursday, August 21:</u>

- 8:00 9:00 AM
- 9:00 10:15 AM
 MRI
- 10:15 10:30 AM
- 10:30 11:45 AM
- 12:00 1:00 PM
- 1:00 3:45 PM
- 4:00 5:00 PM
- 5:30 6:30 PM

Breakfast Case Study: Quantitative

Break

Case Study: Molecular Dynamics Lunch Hands-on Lab

Keynote (NCSA Auditorium)

Reception (NCSA Lobby)

Friday, August 22:

- 8:00 9:00 AM
- 8:30 9:45 AM
- 9:45-10:15
- 10:15-10:30

Breakfast

Wrap up and next steps Student Feedback

Break

- 10:30 AM 12:30 PM Individual and/or group sharing of projects or ideas (quick and informal)
- 12:30 Box Lunch, Adjourn