VSCSE Summer School 2008

Accelerators for Science and Engineering
Applications: GPUs and Multi-cores

Lecture 1
Introduction and Motivation
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"Based on slide 7 of S. Green, “GPU Physics,” SIGGRAPH 2007 GPGPU Course. http://www.gpgpu.org/s2007/slides/15-GPGPU-physics.pdf
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Design philosophies are different.

* The GPU is specialized for compute-intensive,
massively data parallel computation (exactly what
graphics rendering is about)

— So, more transistors can be devoted to data processing
rather than data caching and flow control
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« The fast-growing video game industry exerts
strong economic pressure for constant innovation
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This is not your advisor's parallel
computer!

 Significant application-level speedup over uni-processor
execution
— No more “killer micros”

« Easy entrance
— An initial, naive code typically get at least 2-3X speedup

« Wide availability to end users
— available on laptops, desktops, clusters, super-computers

* Numerical precision and accuracy
— |IEEE floating-point and double precision
« Strong scaling roadmap
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GPU Computing Scaling

« Laptops, desktops, workstations,
servers, clusters — (cell phones? iPods?)

« UIUC has built a 16-node GPU cluster
— Peak performance 32.5 TFLOPS (SP)
— For science and engineering apps

« UIUC is planning a 32-node GPU cluster
for Summer 2008 Tesla D870

— Estimated peak performance 130 TFLOPS
(SP) and 16 TFLOPS (DP)

« UIUC is planning a 400-GPU upgrade to
the NSCA Abe production cluster in Fall
2008
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How much computing power Is
enough?

 Each 10X jump in computing power motivates
new ways of computing

— Many apps have approximations or omissions that
arose from limitations in computing power

— Every 10x jump in performance allows app
developers to rethink their fundamental
assumptions and strategies

— Example: graphics, medical imaging, physics
simulation, etc.

« Each 2-3X allows addition new, innovative
features to applications
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Historic GPGPU Movement

« (General Purpose computation using GPU
In applications other than 3D graphics

— GPU accelerates critical path of application
« Data parallel algorithms leverage GPU attributes
— Large data arrays, streaming throughput
— Fine-grain SIMD parallelism EEG PU
— Low-latency floating point (FP) computation
« Applications — see //[GPGPU.org
— Game effects (FX) physics, image processing
— Physical modeling, computational engineering, matrix algebra,
convolution, correlation, sorting
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Historic GPGPU Constraints

* Dealing with graphics API

— Working with the corner cases of the Input ngisters
graphics API
» Addressing modes g
— Limited texture size/dimension I e
 Shader capabilities 1

Output Registers

— Limited outputs
* Instruction sets
— Lack of Integer & bit ops

 Communication limited These have all changed
— No interaction between pixels with CUDA!!
— No scatter store ability - a[i] = p

| FB [l Memory |
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What is the GPU Good at?

 The GPU is good at data-parallel processing

 The same computation executed on many data
elements in parallel — low control flow overhead
with high SP floating point arithmetic intensity

« Many calculations per memory access
« Currently also need high floating point to integer
ratio
« High floating-point arithmetic intensity and many
data elements mean that memory access latency
can be hidden with calculations instead of big
data caches — Still need to avoid bandwidth
saturation!
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CUDA - No more shader functions.
* Integrated CPU+GPU application C program

— Serial or modestly parallel C code executes on CPU
— Highly parallel SPMD kernel C code executes on GPU

CPU Serial Code

GPU Parallel Kernel
KernelA<<< nBIk, nTid >>>(args);

CPU Serial Code

GPU Parallel Kernel

KernelB<<< nBlIk, nTid >>>(args);
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It Is about
applications!

Vision, Imaging, VACE, HCI, Modeling and Simulation...
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Science and Engineering Application
Speedup
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App. Archit. Bottleneck Simult. T| Kernel X App X
H.264 Registers, global memory latency 3,936 20.2 1.5
LBM Shared memory capacity 3,200 12.5 12.3
RC5-72 Registers 3,072 17.1 11.0
FEM Global memory bandwidth 4,096 11.0 10.1
RPES Instruction Issue rate 4,096 210.0 79.4
PNS Global memory capacity 2,048 24.0 23.7
LINPACK | Slobal memory bandwidth, CPU-GPU 12,288 19.4 11.8
TRACF Shared memory capacity 4,096 60.2 21.6
FDTD Global memory bandwidth 1,365 10.5 1.2

A7 eue rate 8,192 23.0 23.0

Urbana, Illinois, August

8-22, 2008




Massive Speedup can Revolutionize
Apps Spiral Scan Data

Gridding' T Y
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Spiral scan data + Gridding + FFT:
Faster scan reduces artifacts, averaging increases SNR.
Reconstruction requires little computation.

"Based on Fig 1 of Lustig et al, Fast Spiral Fourier Transform for Iterative MR Image Reconstruction, I[EEE Int| Symp. on Biomedical Imaging, 2004

FFT
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Chemo Therapy Monitoring

6-12 weeks
(hopefully)
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MRI Reconstruction
Spiral Scan Data

o

(C)M
. . Reconstruction
Spiral scan data + lterative recon:

Fast scan reduces artifacts, iterative reconstruction increases SNR.
Reconstruction requires a lot of computation.

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008



An Exciting Revolution - Sodium Map of
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* Images of sodium in the brain
— Requires powerful scanner (9.4 Tesla)
— 2000x less abundant than water, the main modality of MRI today
— Very large number of samples for increased SNR
— Requires high-quality reconstruction

« Study of brain-cell viability before anatomic changes occur
In stroke and cancer treatment — within days!

Courtesy of Keith Thulborn and lan Atkinson, Center for MR Research, University of lllinois at Chicago
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Advanced MRI Reconstruction
(F'F+AW"W)p =F"d

- Q: partial F'F and depends

only on scanner setup
) More than H
ACEREIE 99 59 oftime | F'd depends on scan data

-l o found using linear solver

Compute F"'d — F™F computed once per
iteration; depends on Q, Fd

— AWPW incorporates
anatomical constraints
Reconstruction of a 643 image used to
take days using MatLab!

Haldar, et al, “Anatomically-constrained reconstruction from noisy data,” MR in Medicine.
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Code

for (p = 0; p < numP; p++) {
for (d = 0; d < numD; d++) {
exp = 2*PI* (kx[d] * x[p] +
ky[d] * y[p] +
kz[d] * z[p])’
cArg = cos (exp) ;
sArg = sin(exp);
rFhD[p] += rRho[d] *cArg -
iRho[d] *sArg;
iFhD[p] += iRho[d] *cArg +
rRho[d] *sArg;

Traditional C
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__global _ void
cmpFhD (float* gx, gy, gz, grFhD, giFhD) ({
int p = blockIdx.x * THREADS PB + threadIdx.x;

// register allocate image-space inputs & outputs

x = gx[pl; y =gylpl; z = gz[pl;
rFhD = grFhD[p]; iFhD = giFhD[p];

for (int d = 0; d < SCAN_PTS PER TILE; d++) {
// s (scan data) is held in constant memory
float exp = 2 * PI * (s[d].kx * x +
s[d] .ky * y +
s[d] .kz * z);
cArg = cos(exp); sArg = sin(exp);
rFhD += s[d].rRho*cArg - s[d].iRho*sArg;
iFhD += s[d].iRho*cArg + s[d].rRho*sArg;
}

grFhD[p] = rFhD; giFhD[p] = iFhD;

CUDA Kernel




Performance of FhD Computation
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S.S. Stone, et al, “Accelerating Advanced MRI Reconstruction using
GPUs,” ACM Computing Frontier Conference 2008, Italy, May 2008.
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Final Data Arrangement and Fast
Math
L (e e ),

( Instruction Unit ) exp =
32KB 8KB
Register File Const Cache {
cArg ~ cos (exp) ;
(SPOX X ( 7 sArg
— =
PT*‘ ................................ ‘}T¢
SFUO SFUT —— | /*FRDIpINt= cArg *
— sArg *
—— C — 2 iFhD[p] /+= cArg *
\ ¢ ———— J sArg *
Pixel Data Scan Data
)
. Performance: 128 GFLOPS
Time: 1.2 minutes
J
Global Memory Constant Memory
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Results must be validated by domain
experts.

CPU.SP GPU.Tune
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CUDA for Multi-Core CPU

« A single GPU thread is too small for a CPU Thread
— CUDA emulation does this and performs poorly

« CPU cores designed for ILP, SIMD
— Optimizing compilers work well with iterative loops

« Turn GPU thread blocks from CUDA into iterative CPU loops

CUDA Grid
e R
Compiler
] 1
— = — —
GPU CPU
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Bigger Picture Performance Results

 Consistent speed-up over hand-tuned single-thread code
* Best optimizations for GPU and CPU not always the same

Application C on single CUDAon 4- | Speedup*| CUDA on G80

core CPU core CPU Time
Time Time
MRI-FHD ~1000s 230s ~4x 8.5s
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A Great Opportunity for Many

« GPU parallel computing allows
— Drastic reduction in “time to discovery”
— 18t principle-based simulation at meaningful scale

— New, 3" paradigm for research: computational
experimentation

 The “democratization” of power to discover

« $2,000/Teraflop SPFP in personal computers today

« $5,000,000/Petaflops DPFP in clusters in two years

« HW cost will no longer be the main barrier for big science
* You will make the difference!
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Course Objective

« To learn high-performance parallel programming

— Computational thinking — formulating domain problems
iInto computational models

— Understanding hardware strength and limitation
— Understand optimizations
« To maintain reliability and supportability
— Using simple and disciplined parallel execution models

« To achieve scalability

— Achieving high-performance on current and future
hardware platforms with the same code
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Monday, August 18:

© David Kirk/NVIDIA and Wen-mei W. Hwu

11:00 AM - 1:00 PM

12:50-1:00 PM
1:00 — 2:15 PM
2:15-2:30 PM
2:30 — 3:45 PM
4:00 - 5:00 PM

5:30 - 6:30 PM

Urbana, Illinois, August 18-22, 2008

Agenda

Registration, Lunch
Welcome
Introduction

Break

CUDA Basics

Multidisciplinary Panel
(NCSA Auditorium)

Reception (NCSA Lobby)



Agenda

Tuesday, August 19:

 8:00-9:00 AM Breakfast

 9:00-10:15 AM CUDA Threading Model
« 10:15-10:30 AM Break

 10:30 — 11:45 AM CUDA Memory Model

e« 12:00 - 1:00 PM Lunch

« 1:.00 - 3:45 PM Hands-on Lab

 4:00-5:00 PM Keynote (NCSA Auditorium)

5:30 - 6:30 PM Reception (NCSA Lobby)
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Agenda

Wednesday, August 20:

 8:00-9:00 AM Breakfast

« 9:00-10:15 AM Performance
Considerations

« 10:15-10:30 AM Break

 10:30-11:45 AM Floating-Point Considerations

« 12:00 -1:00 PM Lunch

 1:00 — 3:45 PM Hands-on Lab

 4:00-5:00 PM Keynote (NCSA Auditorium)

« 5:30-6:30 PM Reception (NCSA Lobby)
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Agenda

Thursday, Auqust 21:

« 8:00-9:00 AM Breakfast

 9:00-10:15 AM Case Study: Quantitative
MRI

 10:15-10:30 AM Break

 10:30 - 11:45 AM Case Study: Molecular Dynamics

 12:00 - 1:00 PM Lunch

 1:00-3:45 PM Hands-on Lab

 4:00-5:00 PM Keynote (NCSA Auditorium)

« 5:30-6:30 PM Reception (NCSA Lobby)
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Agenda

Friday, August 22:

 8:00-9:00 AM Breakfast

 8:30-9:45 AM Wrap up and next steps
¢ 9:45-10:15 Student Feedback
 10:15-10:30 Break

10:30 AM - 12:30 PM Individual and/or group sharing

of projects or ideas (quick and
informal)

12:30 Box Lunch, Adjourn
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