VSCSE Summer School 2008

Accelerators for Science and Engineering Applications

Lecture 4: CUDA Memories
G80 Implementation of CUDA Memories

- Each thread can:
 - Read/write per-thread registers
 - Read/write per-thread local memory
 - Read/write per-block shared memory
 - Read/write per-grid global memory
 - Read/only per-grid constant memory
CUDA Variable Type Qualifiers

<table>
<thead>
<tr>
<th>Variable declaration</th>
<th>Memory</th>
<th>Scope</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>device local int LocalVar;</td>
<td>local</td>
<td>thread</td>
<td>thread</td>
</tr>
<tr>
<td>device shared int SharedVar;</td>
<td>shared</td>
<td>block</td>
<td>block</td>
</tr>
<tr>
<td>device int GlobalVar;</td>
<td>global</td>
<td>grid</td>
<td>application</td>
</tr>
<tr>
<td>device constant int ConstantVar;</td>
<td>constant</td>
<td>grid</td>
<td>application</td>
</tr>
</tbody>
</table>

- **__device__** is optional when used with **__local__**, **__shared__**, or **__constant__**

- **Automatic variables** without any qualifier reside in a **register**
 - Except arrays that reside in local memory
Where to Declare Variables?

Can host access it?

- yes
- no

- global
- constant

- register (automatic)
- shared
- local

Outside of any Function

In the kernel
Variable Type Restrictions

• **Pointers** can only point to memory allocated or declared in global memory:
 – Allocated in the host and passed to the kernel:
    ```c
    __global__ void KernelFunc(float* ptr)
    ```
 – Obtained as the address of a global variable:
    ```c
    float* ptr = &GlobalVar;
    ```
A Common Programming Strategy

• Global memory resides in device memory (DRAM)
 - much slower access than shared memory
• So, a profitable way of performing computation on the device is to tile data to take advantage of fast shared memory:
 - Partition data into subsets that fit into shared memory
 - Handle each data subset with one thread block by:
 • Loading the subset from global memory to shared memory, using multiple threads to exploit memory-level parallelism
 • Performing the computation on the subset from shared memory; each thread can efficiently multi-pass over any data element
 • Copying results from shared memory to global memory
A Common Programming Strategy (Cont.)

• Constant memory also resides in device memory (DRAM) - much slower access than shared memory
 – But… cached!
 – Highly efficient access for read-only data

• Carefully divide data according to access patterns
 – R/Only ➔ constant memory (very fast if in cache)
 – R/W shared within Block ➔ shared memory (very fast)
 – R/W within each thread ➔ registers (very fast)
 – R/W inputs/results ➔ global memory (very slow)

For texture memory usage, see courses.ece.uiuc.edu/ece498/al.
GPU Atomic Integer Operations

- Atomic operations on integers in global memory:
 - Associative operations on signed/unsigned ints
 - add, sub, min, max, ...
 - and, or, xor
 - Increment, decrement
 - Exchange, compare and swap
- Requires hardware with compute capability 1.1
Matrix Multiplication using Shared Memory
Revised Matrix Multiplication Kernel using Multiple Blocks

```c
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) {
    // Calculate the row index of the Pd element and M
    int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
    // Calculate the column index of Pd and N
    int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

    float Pvalue = 0;
    // each thread computes one element of the block sub-matrix
    for (int k = 0; k < Width; ++k)
        Pvalue += Md[Row][k] * Nd[k][Col];

    Pd[Row][Col] = Pvalue;
}
```
How about performance on G80?

• All threads access global memory for their input matrix elements
 – Two memory accesses (8 bytes) per floating point multiply-add
 – 4B/s of memory bandwidth/FLOPS
 – $4 \times 346.5 = 1386$ GB/s required to achieve peak FLOP rating
 – 86.4 GB/s limits the code at 21.6 GFLOPS
• The actual code runs at about 15 GFLOPS
• Need to drastically cut down memory accesses to get closer to the peak 346.5 GFLOPS
Idea: Use Shared Memory to reuse global memory data

- Each input element is read by WIDTH threads.
- Load each element into Shared Memory and have several threads use the local version to reduce the memory bandwidth
 - Tiled algorithms
Tiled Multiply

- Break up the execution of the kernel into phases so that the data accesses in each phase is focused on one subset (tile) of Md and Nd.
A Small Example
Every M and N Element is used exactly twice in generating a 2X2 tile of P

<table>
<thead>
<tr>
<th></th>
<th>$P_{0,0}$ thread$_{0,0}$</th>
<th>$P_{1,0}$ thread$_{1,0}$</th>
<th>$P_{0,1}$ thread$_{0,1}$</th>
<th>$P_{1,1}$ thread$_{1,1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$M_{0,0} \times N_{0,0}$</td>
<td>$M_{0,0} \times N_{1,0}$</td>
<td>$M_{0,1} \times N_{0,0}$</td>
<td>$M_{0,1} \times N_{1,0}$</td>
</tr>
<tr>
<td></td>
<td>$M_{1,0} \times N_{0,1}$</td>
<td>$M_{1,0} \times N_{1,1}$</td>
<td>$M_{1,1} \times N_{0,1}$</td>
<td>$M_{1,1} \times N_{1,1}$</td>
</tr>
<tr>
<td></td>
<td>$M_{2,0} \times N_{0,2}$</td>
<td>$M_{2,0} \times N_{1,2}$</td>
<td>$M_{2,1} \times N_{0,2}$</td>
<td>$M_{2,1} \times N_{1,2}$</td>
</tr>
<tr>
<td></td>
<td>$M_{3,0} \times N_{0,3}$</td>
<td>$M_{3,0} \times N_{1,3}$</td>
<td>$M_{3,1} \times N_{0,3}$</td>
<td>$M_{3,1} \times N_{1,3}$</td>
</tr>
</tbody>
</table>
Breaking Md and Nd into Tiles

<table>
<thead>
<tr>
<th></th>
<th>Md0,0</th>
<th>Md1,0</th>
<th>Md2,0</th>
<th>Md3,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Md0,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Md1,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Md2,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Md3,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd0,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd1,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd2,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd3,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd0,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd1,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd2,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd3,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd0,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd1,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd2,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd3,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd0,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd1,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd2,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd3,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Each phase uses one tile from Md and one from Nd

<table>
<thead>
<tr>
<th>Phase 1</th>
<th>Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₀₂₀</td>
<td>Md₀₀₀</td>
</tr>
<tr>
<td>↓ Mds₀₀₀</td>
<td>↓ Nds₀₀₀</td>
</tr>
<tr>
<td>T₁₀₀</td>
<td>Md₁₀₀</td>
</tr>
<tr>
<td>↓ Mds₁₀₀</td>
<td>↓ Nds₁₀₀</td>
</tr>
<tr>
<td>T₀₁₀</td>
<td>Md₀₁₀</td>
</tr>
<tr>
<td>↓ Mds₀₁₀</td>
<td>↓ Nds₀₁₀</td>
</tr>
<tr>
<td>T₁₁₀</td>
<td>Md₁₁₀</td>
</tr>
<tr>
<td>↓ Mds₁₁₀</td>
<td>↓ Nds₁₁₀</td>
</tr>
</tbody>
</table>
First-order Size Considerations in G80

• Each thread block should have many threads
 – TILE_WIDTH of 16 gives 16*16 = 256 threads

• There should be many thread blocks
 – A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks

• Each thread block perform 2*256 = 512 float loads from global memory for 256 * (2*16) = 8,192 mul/add operations.
 – Memory bandwidth no longer a limiting factor
CUDA Code – Kernel Execution Configuration

// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);
dim3 dimGrid(Width / TILE_WIDTH, Width / TILE_WIDTH);
Tiled Matrix Multiplication Kernel

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
1. __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
2. __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];
3. int bx = blockIdx.x; int by = blockIdx.y;
4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on
5. int Row = by * TILE_WIDTH + ty;
6. int Col = bx * TILE_WIDTH + tx;
7. float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {
// Collaborative loading of Md and Nd tiles into shared memory
9. Mds[tx][ty] = Md[(m*TILE_WIDTH + tx)*Width+Row];
10. Nds[tx][ty] = Nd[Col*Width+(m*TILE_WIDTH + ty)];
11. __syncthreads();
12. for (int k = 0; k < TILE_WIDTH; ++k)
13. Pvalue += Mds[tx][k] * Nds[k][ty];
14. __syncthreads();
15. Pd[Row*Width+Col] = Pvalue;
}

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008
Tiled Multiply

- Each **block** computes one square sub-matrix $P_{d_{sub}}$ of size $TILE_ WIDTH$
- Each **thread** computes one element of $P_{d_{sub}}$
G80 Shared Memory and Threading

• Each SM in G80 has 16KB shared memory
 – SM size is implementation dependent!
 – For TILE_WIDTH = 16, each thread block uses $2 \times 256 \times 4B = 2KB$ of shared memory.
 – Can potentially have up to 8 Thread Blocks actively executing
 • This allows up to $8 \times 512 = 4,096$ pending loads. (2 per thread, 256 threads per block)
 – The next TILE_WIDTH 32 would lead to $2 \times 32 \times 32 \times 4B = 8KB$ shared memory usage per thread block, allowing only up to two thread blocks active at the same time

• Using 16x16 tiling, we reduce the accesses to the global memory by a factor of 16
 – The 86.4B/s bandwidth can now support $(86.4/4) \times 16 = 347.6$ GFLOPS!
Tiling Size Effects

![Graph showing the effects of tiling size on performance. The x-axis represents different tiling sizes (not tiled, 4x4 tiles, 8x8 tiles, 12x12 tiles, 16x16 tiles), and the y-axis represents GFLOPS. The bars indicate performance with tiled only, tiled & unrolled, tiled only, tiled & unrolled, tiled only, tiled & unrolled, tiled only, and tiled & unrolled.]
Summary - Typical Structure of a CUDA Program

- Global variables declaration
 - __host__
 - __device__... __global__, __constant__, __texture__
- Function prototypes
 - __global__ void kernelOne(…)
 - float handyFunction(…)
- Main()
 - allocate memory space on the device – cudaMalloc(&d_GlblVarPtr, bytes)
 - transfer data from host to device – cudaMemcpy(d_GlblVarPtr, h_Gl…)
 - execution configuration setup
 - kernel call – kernelOne<<<execution configuration>>>(args…);
 - transfer results from device to host – cudaMemcpy(h_GlblVarPtr,…)
 - optional: compare against golden (host computed) solution
- Kernel – void kernelOne(type args,…)
 - variables declaration - __local__, __shared__
 - automatic variables transparently assigned to registers or local memory
 - syncthreads()
- Other functions
 - float handyFunction(int inVar…);