

CUDA Uses Kernels and Threads for Fast Parallel Execution

Parallel portions of an application are executed on the GPU as kernels

- One kernel is executed at a time
- Many threads execute each kernel

Differences between CUDA and CPU threads

- CUDA threads are extremely lightweight
 - Very little creation overhead
 - Instant switching
- CUDA uses 1000s of threads to achieve efficiency
 - Multi-core CPUs can use only a few

Simple "C" Description For Parallelism


```
void saxpy_serial(int n, float a, float *x, float *y)
    for (int i = 0; i < n; ++i)
                                                        Standard C Code
        y[i] = a*x[i] + y[i];
// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);
<u>__global</u>__ void saxpy_parallel(int n, float a, float *x, float *y)
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    if (i < n) y[i] = a*x[i] + y[i];
                                                          Parallel C Code
// Invoke parallel SAXPY kernel with 256 threads/block
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);
```

The Key to Computing on the GPU

- Standard high level language support
 - C, soon C++ and Fortran
 - Standard and domain specific libraries
- Hardware Thread Management
 - No switching overhead
 - Hide instruction and memory latency
- Shared memory
 - User-managed data cache
 - Thread communication / cooperation within blocks
- Runtime and tool support
 - Loader, Memory Allocation
 - C stdlib

CUDA Programming Model

A kernel is executed by a grid of thread blocks

- A thread block is a batch of threads that can cooperate:
 - Sharing data through shared memory
 - Synchronizing their execution
- Threads from different blocks operate independently

Kernel Memory Access

- Registers
- Global Memory
 - Kernel input and output data reside here
 - Off-chip, large
 - Uncached
- Shared Memory
 - Shared among threads in a single block
 - On-chip, small
 - As fast as registers

Grid

Host

 The host can read & write global memory but not shared memory

Example Fluid Algorithm

GPU Computingwith CUDA

Parallel execution on-chip

Heterogeneous Computing

Oil & Gas

Finance

Medical

Biophysics

Numerics

Audio

Video

Imaging

Parallel Computing on All GPUs

Almost 100 Million CUDA GPUs Deployed

GeForce® Entertainment

Tesla™
High-Performance Computing

Quadro®

Design & Creation

D apparel design and simulation

D dental x-ray system

D image analysis from confocal microscope

D image capture

D-laser scanning feature extraction

coustic and electromagnetic simulation

coustic ray tracing

daptive radiation therapy

irline trinina

LICE geometry processing

nalysis of electroencephalograms

nim ation

stronomical adaptive optics

stronom ical im aging

stronomics image scanning system

strophysics simulation

strophysics simulation

udio conferencing enhancement

udio processing

udio rendering of complex scenes

udio visual editing and scripting

utomated Web page classification

utomobile vision system

utomotive vision system

iochannel simulations

io in fo m a tics

ioinfomatics for protein structure and cellular modelling

ioinfom atics for sequence alignment

iological circuits

iological im aging

iological simulation using evolutionary algorithms

iological simulations

iom edical cell im aging

iomedical image registration and segmentation

iom edical im aging

Biom im etic neural network simulation

BOINC cluster

Broadcast graphics

Broadcast production

Business analytics

Business intelligence

C #

CAD

Call center analysis Casting simulation

Cellphone

Cellular automata for organizational behavior

Cem SSIS space reconstruction

CFD for high speed aircraft engine design

CFD for ocean modelling

CFD with particle flow

Chess

Chromatography analysis

Climate models

Cloth simulation

Color correction for film

Color correction for projectors

Computer design simulation

Computer vision

Computer vision for food inspection

Computer vision simulation of primate vision

Constraint fluid simulation

Consulting

Corporate data analysis

Cosmological simulations

Crash simulation

Cryptography

Crystallography

CT Image reconstruction

Cytogenetics

Data mining

Data reduction software for crystallography

Database search

Defibrillator design

Dental CT scanner

Design for manufacturing

Design for manufacturing software

Diabetic retinal analysis

Digital audio

Digital cinema image reconstruction

Digital fim processing

Digital image correlation

Digital projector

Digital prototyping

Digital speech processing

Digital video management

Digital video recorder

DNA analysis

DNA gene expression data analysis

DNA research

DNA sequence analysis

Document data mining

Dredging simulator

DSP

DVD distribution

Earthquake engineering FEA

Economic modelling

EDA

EDA

Electromagnetic simulation

Electron CAD flow model

Elementary particle research

Email and web security

Equity trading

Exact real arithmetic Face recognition

Facial recognition

Factory design management

FEM in CFD and chemical processes

Film

Film and video production

Film animation

Film processing

Film special effects

Film visual effects

Financial option pricing

Financial pricing

Financial risk analysis

Financial trading

Fingerprint matching

Finite element simulation

Finite element solver

FLASH - adaptive mesh fluid simulation

Flight training simulations

Floodplain simulation

Flow Cytometer

Flow visualization

Fluid dynamics

Fluid dynamics

Fluid flow simulation

Fluid simulation

Fluorsescence Lifetime imaging

Folding at Home

Folding at home clone

Formal verification methods

Fortran, C/C++ compilers

Games

Gene sequence alignment

Genetics

Geomachanics using discrete or finite element analylmaging for security

Geometric modelling

Geophysical imaging

Geospatial image processing

GIS

Graphics

Graphics jpeg viewer

Grid computing

Grid computing

Grid media encoding

Harbor management - vessel navigation

HDR display

Health care sensory processing

High end imaging for professional photography

Holographic cinema

Holographic cinema

Holographic optical trapping

Human language analysis

Hydraulics simulation

Hydrodynamics

Hyperspectral image analysis

IC CAD

Image analysis

Image analysis for cancer research

Image analysis for surveillance systems

Image compression

Image data mining

Im age enhancement

Image feature tracking on high speed video

Image processing

Image processing

Image registration

Image scanning

Image tracking for brain research

Imaging for defect detection

Imaging in high end digital imaging

Im m ersive display

In flight entertainment system

Infectious disease simulation

Infrared imaging

Infrared imaging

Injection molding CAD software

Interactive TV graphics

Interest rate risk calculation

Internet video compression for distribution

IPTV

IPTV form at conversion

Language

Language - CSAIL

Language - MPI extentsions

Large form at imaging

Large scale neural networks Large text database search

Linear program ming

LISTSERV em ail list management

Machine automatioin Machine learning

Machine vision

Manufacturing simulation

Mathematics - 3D framework Mathematics - Computation geometry

Mathematics - fast multipole method

Mathematics - fractals

Mathematics - linear algebra

Mathematics - LSF-SGE

Mathematics - projective space

Mathematics library

Mathematics research - algebraic surface visualization

Mathematics research - interior point methods

Military - SONAR

Military - swimmer detection sonar

Military - training

Military - UAV image processing

Military - Weapons systems physics

Military hyperspectral target detection

Military target modelling

Mine planning

Mixed signal data processing for testing

Molecular dynamics simulation

Molecular dynamics simulation

Molecular dynamics simulation

Molecular dynamics simulation

Molecular modelling

Molecular properties classification

Molecular simulation

Molecular simulation - GROMACS

Molecular structure simulation

Molecular visualization

Motion capture

Movie production special effects

MPEG

MPEG2 decode

MRI analysis of brain function

MRI image reconstruction

MRIimaging

Multibody simulations

Multiphasic flow simulator

Multispectral scene generation

Nano-carbon materials molecular dynamics

Natural language processing

nbody simulation

Netflix competition

Network analysis

Network hub line card

Network load balancer

Network packet inspection

Network processing

Network processor

Network security monitoring

Neural net Al

Neural network research

Neural networks for computer vision

Neuron modelling with XPP

Nightime driving simulator

NMR data analysis

N-particle code for particle transport

Nuclear reactor physics simulation

Object recognition

Oceanographic research

Octopus molecular simulation

Online mapping

Open source mathematics software

Optical inspection

Optical modelling and engineeering

Optical processing

Optical security scanner

Optical simulation

Optronic scene simulator

Orbital analysis

PACS medical record storage

Particle physics

Particle visualization

Pattern analysis tools for neuroimaging

PCB optical inspection

Physics engine

Plasma particle simulation

Power generation statistics

Print pre-processing

Probabilistic model checker

Program mable automation controllers

Protein crystallography

Protein folding

Protein structure prediction and design

Proteomics data diagnostics

Pulsar data analysis

Quantum chemistry

Quantum Chromodynamical calculations

Quantum molecular dynamics

Radar processing

Radar simulation

Radiation therapy machine

Radion astronomy

Ray tracing

Real time rendering

Real time signal processing

Realtime live video encoding

Realtime simulation of machining

Remote graphics

Research - astrophysics

Research - developmental biology

Research - fire simulation, cellular automata

Research - image segmentation

Research - Large particle physics simulation

Research - Mars instruments

Research - optical tracking

Research - reconfigurable computing

Research - visualization

Reservoir simulation

Reservoir simulation

Robot vision

Robot vision

Robotic Al

Robotic radiation therapy machines

Robotic surgery

Robotic vision RSA factoring

RTFSS

SAR

Satellite data analysis Satellite data processing

Satellite development simulators

Satellite image processing

Scanning electron microscope imaging

Scientific data mining

Scientific numerical simulation

Scientific visualization

Search engine

Seismic damage simulation

Seismic imaging Seismic processing SIFT algorithm research

Signal processing

Simulation of micro and nano biochemical reactors

Small molecule dynamics simulation Smoother particle hydrodynamics

Sound synthesis

South Pole Telescope data analysis

Spatial data integration Spatial heart modelling

Spectral Imaging

Spectroscopic data optimization

Speech processing Speek recognition

Sports broadcasting enhancement

Statistical analysis Sterographic vision

Stock market fraud detection

Structural simulation Surgery simulator Surveillance research Surveillance system Television broadcast

Temperature simulation for architecture

Traffic analysis

Train-track interation analysis software Transaction query for mobile commerce

Ultrasonic inspection and testing

Ultrasound imaging

Ultrasound medical imaging
Unlimited precision mathematics
Urban 3D models from video streams

Video and audio finishinig

Video compression

Video compression with cupolet technology

Video compression Video conferencing

Video editing

Video effects generator

Video encoding Video enhancement Video processing Virus scanning

Vision-aided navigation for robotics

Visual information system

Visual search
Visualization
Volume rendering
W all turbulent flows
W eather forecasting
W eb conferencing

Wind engineering for urban and rural environment

Wireless network simulation software

Wireless system design X-ray tomosynthesis

Developers by Category

Registered developers who downloaded both CUDA 0.8 and 1,5

Parallel Computing Applications

Consumer	Business	Workstation	Technical
Imaging ideo – transcoding ames – Physics, AI Computer vision	Search Web	Oil and gas viz CAD	Seismic Finance Numerics*

Grid computing
Audio
Photography
Virus scanning

XML parsing
Database
VPN/networking
Backup compression
RAID

Volume visualization Cluster visualization

Medical imagine EDA CAE GIS

CUDA Compiler Downloads

niversities Teaching Parallel Programming With CUDA

Duke

Erlangen

ETH Zurich

Georgia Tech

Grove City College

Harvard

ШТ

IIT

Illinois Urbana-Champaign

INRIA

Iowa

ITESM

Johns Hopkins

Kent State

Kyoto

Lund

Maryland

McGill

MIT

North Carolina - Chapel Hill

North Carolina State

Northeastern

Oregon State

Pennsylvania

Polimi

Purdue

Santa Clara

Stanford Stuttgar

Suny

Tokyo

TU-Vienna

• USC

Utah

Virginia

Washington

Waterloo

Western Australia

Williams College

Wisconsin

Wide Developer Acceptance

of volumetric white

matter connectivity

lonic placement for molecular dynamics simulation on GPU

Transcoding HD video stream to H.264

Simulation in Matlab using .mex file CUDA function

Astrophysics N-body simulation

Financial simulation of LIBOR model with swaptions

GLAME@lab: An Mscript API for linear Algebra operations on GPU

Ultrasound medical imaging for cancer diagnostics

Highly optimized object oriented molecular dynamics

Cmatch exact string matching to find similar proteins and gene sequences

CUDA Zone

Folding@Home Using GROMACS

Science: National Center for Atmospheric Research

eather Research and Forecast (WRF) model

00+ registered users worldwide

% speedup with 1% of WRF on CUDA

ives 1 week analysis time

Finance: Real-time Options Valuation

Hanweck Associates Volera real-time option valuation engine Value the entire U.S. listed options market in real-time using 3 NVIDIA Tesla S870's

GPUs	CPUs	Savings
12	600	
6U	54U	9x
\$42,000	\$262,000	6x
\$140,000	\$1,200,000	9x
	12	12 600 6U 54U \$42,000 \$262,000

Figures assume:

- NVIDIA Tesla S870s with one 8-core host server per unit
- CPUs are 8-core blade servers: 10 blades per 71
- \$1,800/U/month rack and power charges
- 5-vear depreciation

DVID

Design: CAD Design For Apparel Cloth Physics

GIS Application

From the Manifold 8 feature list:

... applications fitting CUDA capabilities that might have taken tens of seconds or even minutes can be accomplished in hundredths of seconds. ... CUDA will clearly emerge to be the future of almost all GIS computing

from the user manual:

"NVIDIA CUDA ... could well be the most revolutionary thing to happen in computing since the invention of the microprocessor

nbody Astrophysics

Astrophysics research

1 GF on standard PC

300+ GF on GeForce 8800GTX

Faster than GRAPE-6Af custom simulation computer

http://progrape.jp/

OmegaSim GX - Spice Simulation with CUDA

40x Speedup for transistor evaluation

Up to 90% of SPICE execution time spent

in transistor evaluation

Avg. 8x overall speedup

Gauda Optical Proximity Correction (OPC) 200x Faster and Lower Cost

EvolvedMachines

(O)

Simulate the brain circuit

Sensory computing: vision, olfactory

130X Speed up

Matlab: Language of Science

18X with MATLAB CPU+GPU

http://developer.nvidia.com/object/matlab_cuda.html

Pseudo-spectral simulation of 2D Isotropic turbulence

http://www.amath.washington.edu/courses/571-winter-2006/matlab/FS_2Dturb.m

Faster is not "just Faster"

- 2-3X faster is "just faster"
 - Do a little more, wait a little less
 - Doesn't change how you work
- 5-10x faster is "significant"
 - Worth upgrading
 - Worth re-writing (parts of) the application
- 100x+ faster is "fundamentally different"
 - Worth considering a new platform
 - Worth re-architecting the application
 - Makes new applications possible
 - Drives "time to discovery" and creates fundamental changes in Science

Tesla T10: 1.4 Billion Transistors

Thread Processor Cluster (TPC)

Thread Processor Array (TPA)

Thread Processor

Die Photo of Tesla T10

Double the Performance

1 Teraflop 500 Gigaflops Tesla 8 Tesla 10

Tesla 10-Series

Double the Precision

Double the Memory

Tesla T10 Double Precision Floating Point

Precision	IEEE 754
Rounding modes for FADD and FMUL	All 4 IEEE, round to nearest, zero, inf, -inf
Denormal handling	Full speed
NaN support	Yes
Overflow and Infinity support	Yes
Flags	No
FMA	Yes
Square root	Software with low-latency FMA-based convergence
Division	Software with low-latency FMA-based convergence
Reciprocal estimate accuracy	24 bit
Reciprocal sqrt estimate accuracy	23 bit
log2(x) and 2^x estimates accuracy	23 bit

Double the Performance Using T10

How to Get to 100X?

Traditional Data Center Cluster

8 cores per server

More Servers To Get More Performance

Linear Scaling with Multiple GPUs

Heterogeneous Computing Cluster

10,000's processors per cluster

1928 processors

- Hess
- NCSA / UIUC
- JFCOM
- SAIC
- University of North Carolina
- Max Plank Institute
- Rice University
- University of Maryland
- GusGus
- Eotvas University
- University of Wuppertal
- IPE/Chinese Academy of Sciences
- Cell phone manufacturers

Building a 100TF datacenter

Tesla S1070 1U System

4 Teraflops¹ 700 watts²

Tesla C1060 Computing Processor

957 Gigaflops¹

160 watts²

What's Next for CUDA

Fortran C++ Multiple GPUs

Debugger Profiler GPU Cluster

Application Software Industry Standard C Language

Libraries

cuFFT

cuBLAS

cuDPP

System

1U PCI-E Switch

CUDA Compiler

C Fortran Multi-core

CUDA Tools

Debugger Profiler

Compiling CUDA

CUDA Source Code

Industry Standard C Language

Industry Standard Libraries

CUDA Compiler

C Fortran

Standard

Debugger Profiler

CUDA 2.0: Many-core + Multi-core support

Questions?