Algorithm Design for Manycore GPUs

Michael Garland

NVIDIA Research
Many processors each supporting **many hardware threads**

On-chip memory near processors

Shared global memory space (external DRAM)
Some perspective

- GPUs are parallel co-processors, *not* accelerators
- 10 threads don’t matter; 10,000 threads do
- Divide & conquer is often the way to win
- Some irregularity is ok if the common case is regular
CUDA in a Nutshell

__host__
void example()
{
 int B = 128,
 P = ceil(n/B);
 saxpy<<<P,B>>>(n, a, x, y);
}

__global__
void saxpy(int n, float a,
 float *x, float *y)
{
 int i = blockIdx.x * blockDim.x
 + threadIdx.x;
 if(i<n) y[i] = a * x[i] + y[i];
}

CUDA in a Nutshell

Kernel

schedule onto multiprocessors

GPU

M0
RAM

Mk
RAM
CUDA Model of Parallelism

CUDA virtualizes the physical hardware
- thread is a virtualized scalar processor (registers, PC, state)
- block is a virtualized multiprocessor (threads, shared mem.)

Scheduled onto physical hardware without pre-emption
- threads/blocks launch & run to completion
- blocks should be independent
Global synchronization isn’t cheap
Global memory access times are expensive

cf. PRAM (Parallel Random Access Machine) model
NOT: Distributed Processors

Distributed computing is a different setting

cf. BSP (Bulk Synchronous Parallel) model, MPI
Imperatives for Efficient Design

- Expose abundant fine-grained parallelism
 - need 1000’s of threads for full utilization (30K max)

- Maximize on-chip work
 - on-chip memory orders of magnitude faster

- Minimize execution divergence
 - SIMT execution of threads in 32-thread warps

- Minimize memory divergence
 - coalesced load/store across warp (~ vector load/store)
Coalescing Adjacent Loads

```c
void saxpy(int n, float a, float *x, float *y, int stride) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    if(i<n) y[i*stride] = a * x[i*stride] + y[i*stride];
}
```

86% of theoretical peak (GTX 280)
Two regimes of parallel tasks

- Many independent fine-grained tasks
 - assign 1 task to each thread
 - coordination mostly at kernel boundaries

- Collection of coordinated parallel tasks
 - assign 1 task to each thread block
 - common case in divide & conquer algorithms
REDUCTION
Parallel Reduction

- Summing up a sequence with 1 thread:

  ```
  int sum = 0;
  for(int i=0; i<N; ++i) sum += x[i];
  ```

- Parallel reduction within 1 thread block:
 - each thread holds 1 element
 - stepwise partial sums in a tree fashion
 - B threads need log B steps

- Parallel reduction of arbitrary arrays:
 - coordinate reductions within multiple blocks
Illustrating intra-block reduction

Input (shared memory)

\[
x[i] += x[i+8];
\]

\[
x[i] += x[i+4];
\]

\[
x[i] += x[i+2];
\]

\[
x[i] += x[i+1];
\]

Final result
template<typename T>
__device__ T reduce(T *x)
{
 unsigned int i = threadIdx.x;
 unsigned int n = blockDim.x;

 for(unsigned int offset=n/2; offset>0; offset/=2)
 {
 if(tid < offset)
 x[i] += x[i + offset];
 __syncthreads();
 }

 return x[0]; // Note that only thread 0 has full sum
Generic reduction implementation

```cpp
template<typename T, typename OP>
__device__ T reduce(T *x, OP op)
{
    unsigned int i = threadIdx.x;
    unsigned int n = blockDim.x;

    for(unsigned int offset=n/2; offset>0; offset/=2)
    {
        if(tid < offset)
            x[i] = op(x[i], x[i + offset]);
        __syncthreads();
    }

    return x[0];  // Note that only thread 0 has final result
}
```

must be commutative & associative
Coordinating blocks recursively

- Divide N elements amongst $P=N/B$ blocks

- Reduce partial sums with $(N/B)/B$ blocks & repeat

$\log_B N$ steps
Coordinating blocks directly

- Assign N/P elements to each of P blocks

 reduce reduce reduce reduce reduce reduce reduce reduce

- Collect P sums & reduce with 1 block

 reduce

- We’re done in **2 steps**, but make sure P fills machine
Directions for improvement

- Pay attention to operator properties
 - associative? commutative? has inverse? has identity?
 - the fewer that are true, the more careful the code must be
 - e.g., reduction examples assume commutative w/ identity

- Many opportunities for code optimization
 - remove inefficiencies
 - (auto-) tuning for different cases
Directions for optimization

- Loop unrolling with fixed block sizes
 - almost always a good idea

- Minimize unutilized threads
 - reduction example leaves half its threads idle

- Vector loads can improve efficiency
 - float2, float4, ...

- Extra serial work per thread can improve efficiency
 - cf. vector loads
Designing efficient sorting algorithms for manycore GPUs, Nadathur Satish, Mark Harris, and Michael Garland. IPDPS 2009.

MERGE SORT
Why sort?

- To sort data
- To bring together all records with the same key
 - cf. hashing
- To build data structures
 - CSR matrix, Bounding Volume Hierarchies, …
- Once you have a fast sort, many things are easier
Merge Sort

- Divide input array into 256-element tiles
- Sort each tile independently
- Produce sorted output with tree of merges
Traditional sequential approach

- Sorting each tile: take your pick
 - quicksort, heap sort, insertion sort, ...

- Merging two tiles: take next element one at a time
 - `merge(A, B):
 ... if A or B is empty return the other ...
 if A[0]<B[0]:
 first, A = A[0], A[1:]
 else:
 first, B = B[0], B[1:]
 return first + merge(A, B)
Tiles are sized so that:
- a single thread block can sort them efficiently
- they fit comfortably in on-chip memory

Sorting networks are most efficient in this regime
- we use odd-even merge sort
- about 5-10% faster than comparable bitonic sort

Caveat: sorting networks may reorder equal keys
Odd-Even Merge Sort

```cpp
template<typename T, typename Cmp>
__device__ void odd_even_sort(T *keys, int i, int n, Cmp lt)
{
    for(unsigned int p=n/2; p>0; p/=2) {
        unsigned int q=n/2, r=0, d=p;
        while( q>=p ) {
            if( i<(n-d) && (i&p)==r ) {
                unsigned int j = i+d;
                T xi = keys[i], xj = keys[j];

                if(lt(xj,xi)) {
                    keys[i] = xj;
                    keys[j] = xi;
                }
            }
            d = q-p; q = q/2; r = p;
        }
        __syncthreads();
    }
}
```

Algorithm M, Section 5.2.2
The Art of Computer Programming, Vol 3
D. E. Knuth
Merging pairs of sorted tiles

- Launch 1 thread block to process each pair of tiles
- Load tiles into on-chip memory
- Perform **counting merge**
- Stored merged result to global memory
Counting Merge

lower_bound(B[j], A) = count(i where B[j] < A[i])

Use binary search since A & B are sorted
Counting Merge

\[
\text{upper_bound}(A[i], B) = \text{count}(j \text{ where } A[i] \leq B[j])
\]

\[
\]

\[
\]

\[
\text{lower_bound}(B[j], A) = \text{count}(i \text{ where } B[j] < A[i])
\]

\[
\text{scatter}(A[i] \rightarrow C[i + \text{upper_bound}(A[i], B)])
\]

\[
\text{scatter}(B[j] \rightarrow C[\text{lower_bound}(B[j], A) + j])
\]
Merging Larger Subsequences

- Partition larger sequences into collections of tiles
- Apply counting merge to each pair of tiles
Two-way Partitioning Merge

- Pick a splitting element from either A or B

- Divide A and B into elements below/above splitter

- Recurse

merge:
- $B[j] \leq A[i]$

merge:
- $B[j] > A[i]$

found by binary search
Multi-way Partitioning Merge

- Pick every 256th element of A & B as splitter

| 256 | 256 | 256 | ... | 256 |

- Apply merge recursively to merge splitter sets
 - recursively apply merge procedure

- Split A & B with merged splitters

| A0 | A1 | A2 | ... |
| B0 | B1 | B2 | ... |

- Merge resulting pairs of tiles (at most 256 elements)
Implementing sparse matrix-vector multiplication on throughput-oriented processors, Nathan Bell and Michael Garland. Supercomputing ‘09

SPARSE MATRICES
Sparse matrix-vector multiplication

- Compute $y \leftarrow Ax + y$
 - where A is sparse and x, y are dense

- Unlike dense methods, SpMV is generally
 - unstructured / irregular
 - entirely bound by memory bandwidth
Application

Iterative methods for linear systems
- Conjugate Gradient, GMRES, etc.
- 100s or 1000s of SpMV operations ($y = Ax$)
Finite-Element Methods
- Discretize PDEs on structured or unstructured meshes
- Mesh determines matrix sparsity structure
Compressed Sparse Row (CSR)

\[
\begin{pmatrix}
3 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 2 & 4 & 1 \\
1 & 0 & 0 & 1 \\
\end{pmatrix}
\]

Nonzero values
\[\text{data}[7] = \{3, 1, 2, 4, 1, 1, 1\};\]

Column indices
\[\text{indices}[7] = \{0, 2, 1, 2, 3, 0, 3\};\]

Row pointers
\[\text{ptr}[5] = \{0, 2, 2, 5, 7\};\]
for (int row = 0; row < num_rows; row++){
 float dot = 0;
 int row_start = ptr[row];
 int row_end = ptr[row + 1];
 for (int jj = row_start; jj < row_end; jj++)
 dot += data[jj] * x[indices[jj]];
 y[row] += dot;
}
Parallelizing CSR SpMV

- Straightforward approach
 - One thread per matrix row

<table>
<thead>
<tr>
<th></th>
<th>Thread 0</th>
<th>Thread 1</th>
<th>Thread 2</th>
<th>Thread 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
int row = blockDim.x * blockIdx.x + threadIdx.x;
if (row < num_rows){
 float dot = 0;
 int row_start = ptr[row];
 int row_end = ptr[row + 1];
 for (int jj = row_start; jj < row_end; jj++)
 dot += data[jj] * x[indices[jj]];
 y[row] += dot;
}

Nonzero values data[7] = \{3, 1, 2, 4, 1, 1, 1\};
Column indices indices[7] = \{0, 2, 1, 2, 3, 0, 3\};
Row pointers ptr[5] = \{0, 2, 2, 5, 7\};
void
csr_spmv_kernel(const int num_rows,
 const int * ptr,
 const int * indices,
 const float * data,
 const float * x,
 float * y)
{
 for (int row = 0; row < num_rows; row++){
 float dot = 0;
 int row_start = ptr[row];
 int row_end = ptr[row + 1];
 for (int jj = row_start; jj < row_end; jj++)
 dot += data[jj] * x[indices[jj]];
 y[row] += dot;
 }
}
Comparing Kernels (CUDA)

```c
__global__ void
csr_spmv_kernel(const int num_rows,
                 const int * ptr,
                 const int * indices,
                 const float * data,
                 const float * x,
                 float * y)
{
    int row = blockDim.x * blockIdx.x + threadIdx.x;
    if ( row < num_rows ){
        float dot = 0;
        int row_start = ptr[row];
        int row_end = ptr[row + 1];
        for (int jj = row_start; jj < row_end; jj++)
            dot += data[jj] * x[indices[jj]];
        y[row] += dot;
    }
}
```
void csrmul_openmp(…)
{
 #pragma omp parallel for
 for(uint row=0; row<num_rows; ++row)
 {
 uint row_begin = Ap[row];
 uint row_end = Ap[row+1];

 ... compute y[row] ...
 }
}

__global__ void csrmul_kernel(…)
{
 uint row = blockIdx.x*blockDim.x + threadIdx.x;

 if(row<num_rows)
 {
 uint row_begin = Ap[row];
 uint row_end = Ap[row+1];

 ... compute y[row] ...
 }
}
Problems with simple CSR kernel

- **Execution divergence**
 - Varying row lengths

- **Memory divergence**
 - Minimal coalescing

Nonzero values

Data array:

\[
\text{data}[7] = \{3, 1, 2, 4, 1, 1, 1\};
\]

Column indices

Indices array:

\[
\text{indices}[7] = \{0, 2, 1, 2, 3, 0, 3\};
\]

Row pointers

Ptr array:

\[
\text{ptr}[5] = \{0, 2, 2, 5, 7\};
\]
Regularizing SpMV with ELL format

- Quantize each row to a fix length K

<table>
<thead>
<tr>
<th>Thread 0</th>
<th>Values</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 1 *</td>
<td>0 2 *</td>
</tr>
<tr>
<td>Thread 1</td>
<td>* * *</td>
<td>* * *</td>
</tr>
<tr>
<td>Thread 2</td>
<td>2 4 1</td>
<td>1 2 3</td>
</tr>
<tr>
<td>Thread 3</td>
<td>1 1 *</td>
<td>0 3 *</td>
</tr>
</tbody>
</table>

- Layout in column-major order
 - yields full coalescing
Exposing maximal parallelism

- Use COO (Coordinate) format
 - list row, column, and value for every non-zero entry

 Nonzero values \(\text{data}[7] = \{ 3, 1, 2, 4, 1, 1, 1 \} \);

 Column indices \(\text{cols}[7] = \{ 0, 2, 1, 2, 3, 0, 3 \} \);

 Row indices \(\text{rows}[7] = \{ 0, 0, 1, 1, 1, 2, 2 \} \);

- Assign one thread to each non-zero entry
 - each thread computes an \(A[i,j] \times x[j] \) product
 - sum products with **segmented reduction** algorithm
 - largely insensitive to row length distribution
Tradeoffs: Matrix Representations

<table>
<thead>
<tr>
<th>Format</th>
<th>Threads</th>
<th>Coalescing</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSR</td>
<td>per row</td>
<td>rare</td>
</tr>
<tr>
<td>ELL</td>
<td>per row</td>
<td>full</td>
</tr>
<tr>
<td>COO</td>
<td>per entry</td>
<td>full</td>
</tr>
<tr>
<td>HYB</td>
<td>ELL+COO</td>
<td>full</td>
</tr>
</tbody>
</table>
Granularity effects with 4M nonzeros

Matrix Rows

COO CSR (scalar) ELL

GFLOP/s
Multicore comparison

<table>
<thead>
<tr>
<th>Name</th>
<th>Sockets</th>
<th>Cores</th>
<th>Clock (GHz)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell</td>
<td>1</td>
<td>8 (SPEs)</td>
<td>3.2</td>
<td>IBM QS20 Blade (half)</td>
</tr>
<tr>
<td>Xeon</td>
<td>1</td>
<td>4</td>
<td>2.3</td>
<td>Intel Clovertown</td>
</tr>
<tr>
<td>Dual Cell</td>
<td>2</td>
<td>16 (SPEs)</td>
<td>3.2</td>
<td>IBM QS20 Blade (full)</td>
</tr>
<tr>
<td>Dual Xeon</td>
<td>2</td>
<td>8</td>
<td>2.3</td>
<td>2x Intel Clovertown</td>
</tr>
</tbody>
</table>

Source:

Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms.

Sparse Matrix-Vector Multiplication (FP64)

Cell and Xeon Results from "Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms", Williams et al. Supercomputing 2007
Sparse Matrix-Vector Multiplication (FP64)

Effective bandwidth (FP64)

- COO
- CSR (scalar)
- CSR (vector)
- HYB

141.7 theoretical peak (GTX 280)
Questions?

mgarland@nvidia.com

http://www.nvidia.com/research