Algorithm Design for Manycore GPUs

Michael Garland

NVIDIA Research

GPU: Manycore Microprocessor

Global Memory

- Many processors each supporting many hardware threads
- On-chip memory near processors
- Shared global memory space (external DRAM)

GPUs are parallel co-processors, not accelerators

10 threads don't matter; 10,000 threads do

Divide & conquer is often the way to win

Some irregularity is ok if the common case is regular

CUDA in a Nutshell

CUDA Model of Parallelism

Global Memory

- CUDA virtualizes the physical hardware
 - thread is a virtualized scalar processor
 - block is a virtualized multiprocessor

(registers, PC, state) (threads, shared mem.)

- Scheduled onto physical hardware without pre-emption
 - threads/blocks launch & run to completion
 - blocks should be independent

NOT: Flat Multiprocessor

- Global synchronization isn't cheap
- Global memory access times are expensive

cf. PRAM (Parallel Random Access Machine) model

NOT: Distributed Processors

Interconnection Network

Distributed computing is a different setting

cf. BSP (Bulk Synchronous Parallel) model, MPI

© 2009 NVIDIA Corporation

Imperatives for Efficient Design

Expose abundant fine-grained parallelism

need 1000's of threads for full utilization

(30K max)

Maximize on-chip work

on-chip memory orders of magnitude faster

Minimize execution divergence

SIMT execution of threads in 32-thread warps

Minimize memory divergence

coalesced load/store across warp

(~ vector load/store)

Coalescing Adjacent Loads

NVIDIA

Stride

Two regimes of parallel tasks

Many independent fine-grained tasks

- assign 1 task to each thread
- coordination mostly at kernel boundaries

Collection of coordinated parallel tasks

- assign 1 task to each thread block
- common case in divide & conquer algorithms

REDUCTION

© 2009 NVIDIA Corporation

Parallel Reduction

Summing up a sequence with 1 thread:

int sum = 0;
for(int i=0; i<N; ++i) sum += x[i];</pre>

Parallel reduction within 1 thread block:

- each thread holds 1 element
- stepwise partial sums in a tree fashion
- B threads need log B steps
- Parallel reduction of arbitrary arrays:
 - coordinate reductions within multiple blocks

Illustrating intra-block reduction

Reduction tree implementation


```
template<typename T>
  device T reduce(T *x)
{
    unsigned int i = threadIdx.x;
    unsigned int n = blockDim.x;
    for(unsigned int offset=n/2; offset>0; offset/=2)
    {
        if(tid < offset)</pre>
            x[i] += x[i + offset];
        syncthreads();
    }
```

return x[0]; // Note that only thread 0 has full sum

Generic reduction implementation


```
template<typename T, typename OP>
  device T reduce (T *x, OP op)
{
    unsigned int i = threadIdx.x;
    unsigned int n = blockDim.x;
    for(unsigned int offset=n/2; offset>0; offset/=2)
    {
        if(tid < offset)</pre>
             x[i] = op(x[i], x[i + offset]);
           syncthreads();
    }
                                  must be commutative & associative
    return x[0]; // Note that only thread 0 has final result
}
```

Coordinating blocks recursively

Divide N elements amongst P=N/B blocks

Reduce partial sums with (N/B)/B blocks & repeat

Coordinating blocks directly

Assign N/P elements to each of P blocks

Collect P sums & reduce with 1 block

We're done in 2 steps, but make sure P fills machine

Directions for improvement

Pay attention to operator properties

- associative? commutative? has inverse? has identity?
- the fewer that are true, the more careful the code must be
- e.g., reduction examples assume commutative w/ identity

Many opportunities for code optimization

- remove inefficiencies
- (auto-) tuning for different cases

Directions for optimization

Loop unrolling with fixed block sizes

almost always a good idea

Minimize unutilized threads

- reduction example leaves half its threads idle
- Vector loads can improve efficiency
 - float2, float4, ...

Extra serial work per thread can improve efficiency

cf. vector loads

Designing efficient sorting algorithms for manycore GPUs, Nadathur Satish, Mark Harris, and Michael Garland. IPDPS 2009.

MERGE SORT

- To sort data
- To bring together all records with the same key
 cf. hashing
- To build data structures
 - CSR matrix, Bounding Volume Hierarchies, ...
- Once you have a fast sort, many things are easier

- Divide input array into 256-element tiles
- Sort each tile independently

| sort |
------	------	------	------	------	------	------	------

Produce sorted output with tree of merges

merge	merge	merge	merge				
mer	rge	mer	rge				
merge							

Traditional sequential approach

Sorting each tile: take your pick

quicksort, heap sort, insertion sort, ...

Merging two tiles: take next element one at a time

```
• merge(A, B):
... if A or B is empty return the other ...
if A[0]<B[0]:
    first, A = A[0], A[1:]
else:
    first, B = B[0], B[1:]
return first + merge(A, B)</pre>
```

Sorting a tile in parallel

Tiles are sized so that:

- a single thread block can sort them efficiently
- they fit comfortably in on-chip memory

Sorting networks are most efficient in this regime

- we use odd-even merge sort
- about 5-10% faster than comparable bitonic sort

Caveat: sorting networks may reorder equal keys

Odd-Even Merge Sort

© 2009 NVIDIA Corporation

Algorithm M, Section 5.2.2 *The Art of Computer Programming,* Vol 3 D. E. Knuth

Merging pairs of sorted tiles

sort	sort	sort	sort	sort	sort	sort	sort
mer	rge	mer	rge	mer	merge r		rge

- Launch 1 thread block to process each pair of tiles
- Load tiles into on-chip memory
- Perform counting merge
- Stored merged result to global memory

upper_bound(A[i], B) = count(j where A[i] \leq B[j])

lower_bound(B[j], A) = count(i where B[j] < A[i])</pre>

Use binary search since A & B are sorted

upper_bound(A[i], B) = count(j where A[i] \leq B[j])

lower_bound(B[j], A) = count(i where B[j] < A[i])</pre>

scatter(A[i] -> C[i + upper_bound(A[i], B)])
scatter(B[j] -> C[lower_bound(B[j], A) + j])

Merging Larger Subsequences

- Partition larger sequences into collections of tiles
- Apply counting merge to each pair of tiles

Two-way Partitioning Merge

Pick a splitting element from either A or B

Divide A and B into elements below/above splitter

Multi-way Partitioning Merge

Pick every 256th element of A & B as splitter

- Apply merge recursively to merge splitter sets
 - recursively apply merge procedure
- Split A & B with merged splitters

Merge resulting pairs of tiles (at most 256 elements)

Merge Sorting Rate

Implementing sparse matrix-vector multiplication on throughput-oriented processors, Nathan Bell and Michael Garland. Supercomputing '09

SPARSE MATRICES

Sparse matrix-vector multiplication

• Compute $y \leftarrow Ax + y$

where A is sparse and x, y are dense

Unlike dense methods, SpMV is generally

- unstructured / irregular
- entirely bound by memory bandwidth

Iterative methods for linear systems

- Conjugate Gradient, GMRES, etc.
- 100s or 1000s of SpMV operations (y = A x)

Application

Finite-Element Methods

- Discretize PDEs on structured or unstructured meshes
- Mesh determines matrix sparsity structure

Compressed Sparse Row (CSR)

3	0	1	0
0	0	0	0
0	2	4	1
1	0	0	1

						Row 0		Row 2			Row 3		
Nonzero values	data[7]	II	{	3,	1,	2,	4,	1,	1,	1	};		
Column indices	<pre>indices[7]</pre>	H	{	0,	2,	1,	2,	з,	0,	3	};		
Row pointers	ptr[5]	II	{	Ο,	2,	2,	5,	7	};				

CSR SpMV Kernel (Serial)

				Row 0		Row 2			Rov		
Nonzero values	data[7]	H	{	3,	1,	2,	4,	1,	1,	1	};
Column indices	<pre>indices[7]</pre>	I	{	0,	2,	1,	2,	з,	0,	3	};
Row pointers	ptr[5]	Η	{	Ο,	2,	2,	5,	7	};		

Parallelizing CSR SpMV

Straightforward approach

One thread per matrix row

Thread 0	3	0	1	0
Thread 1	0	0	0	0
Thread 2	0	2	4	1
Thread 3	1	0	0	1

CSR SpMV Kernel (CUDA)


```
int row = blockDim.x * blockIdx.x + threadIdx.x;
if ( row < num_rows ) {
  float dot = 0;
    int row_start = ptr[row];
    int row_end = ptr[row + 1];
    for (int jj = row_start; jj < row_end; jj++)
        dot += data[jj] * x[indices[jj]];
    y[row] += dot;
```

```
}
```

				Row 0		Row 2			Rov		
Nonzero values	data[7]	II	{	3,	1,	2,	4,	1,	1,	1	};
Column indices	<pre>indices[7]</pre>	=	{	0,	2,	1,	2,	з,	0,	3	};
Row pointers	ptr[5]	=	{	0,	2,	2,	5,	7	};		

Comparing Kernels (Serial)


```
void
csr_spmv_kernel(const_int_num_rows,
                const int * ptr,
                const int * indices,
                const float * data,
                const float * x,
                       float * y)
{
    for (int row = 0; row < num rows; row++) {
        float dot = 0;
        int row start = ptr[row];
        int row end = ptr[row + 1];
        for (int jj = row start; jj < row end; jj++)</pre>
            dot += data[jj] * x[indices[jj]];
        y[row] += dot;
```

Comparing Kernels (CUDA)


```
global void
csr spmv kernel(const int num rows,
                const int * ptr,
                const int * indices,
                const float * data,
                const float * x,
                       float * y)
{
    int row = blockDim.x * blockIdx.x + threadIdx.x;
    if ( row < num rows ) {</pre>
        float dot = 0;
        int row start = ptr[row];
        int row end = ptr[row + 1];
        for (int jj = row start; jj < row end; jj++)</pre>
            dot += data[jj] * x[indices[jj]];
        y[row] += dot;
```

}

Compare with OpenMP


```
#pragma omp parallel for
    for(uint row=0; row<num rows; ++row)</pre>
                                          OpenMP Kernel
    {
       uint row begin = Ap[row];
        uint row end = Ap[row+1];
        ... compute y[row] ...
                        global void csrmul kernel(... ... ... ... ...)
                          uint row = blockIdx.x*blockDim.x + threadIdx.x;
                          if( row<num rows )
        CUDA Kernel
                              uint row begin = Ap[row];
                              uint row end = Ap[row+1];
                              ... compute y[row] ...
                          }
   © 2009 NVIDIA Corporation
```

Problems with simple CSR kernel

Execution diver	gence			Thr	ead ()		3	0	1	0	
Varying row le	ngths			Thr	ead ´	1		0 0 0 0				
				Thr	ead 2	2		0	2	4	1	
				Thr	ead 3	3		1	0	0	1	
Memory diverge										,		
				#0	#1	#0	#1	#0	#2	#1	Ite	eration
Nonzero values	data[7]		{	З,	1,	2,	4,	1,	1,	1	};	
Column indices	indices[7]	=	{	0,	2,	1,	2,	з,	0,	3	};	
Row pointers	ptr[5]	=	{	0,	2,	2,	5,	7	};			

Regularizing SpMV with ELL format

Quantize each row to a fix length K

	\	/alue	S	С	ns	
Thread 0	3	1	*	0	2	*
Thread 1	*	*	*	*	*	*
Thread 2	2	4	1	1	2	3
Thread 3	1	1	*	0	3	*

Layout in column-major order

yields full coalescing

Exposing maximal parallelism

Use COO (Coordinate) format

list row, column, and value for every non-zero entry

Nonzero values	data[7]		{	3,	1,	2,	4,	1,	1,	1	};
Column indices	cols[7]	=	{	0,	2,	1,	2,	З,	0,	3	};

Row indices $rows[7] = \{ 0, 0, 1, 1, 1, 2, 2 \};$

Assign one thread to each non-zero entry

- each thread computes an A[i,j]*x[j] product
- sum products with segmented reduction algorithm
- largely insensitive to row length distribution

Format	Threads	Coalescing
CSR	per row	rare
ELL	per row	full
COO	per entry	full
HYB	ELL+COO	full

© 2009 NVIDIA Corporation

Multicore comparison

Name	Sockets	Cores	Clock (GHz)	Notes
Cell	1	8 (SPEs)	3.2	IBM QS20 Blade (half)
Xeon	1	4	2.3	Intel Clovertown
Dual Cell	2	16 (SPEs)	3.2	IBM QS20 Blade (full)
Dual Xeon	2	8	2.3	2x Intel Clovertown

Source:

Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms. Samuel Williams et al., Supercomputing 2007.

Sparse Matrix-Vector Multiplication (FP64)

© 2009 NVIDIA Corporation

Cell and Xeon Results from "Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms", Williams et al, Supercomputing 2007

Sparse Matrix-Vector Multiplication (FP64)

Cell and Xeon Results from "Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms", Williams et al, Supercomputing 2007

Effective bandwidth (FP64)

© 2009 NVIDIA Corporation

Questions?

mgarland@nvidia.com

http://www.nvidia.com/research

© 2009 NVIDIA Corporation