
NVIDIA Research

Algorithm Design for

Manycore GPUs

Michael Garland

© 2009 NVIDIA Corporation

• • •
Processor MemoryProcessor Memory

Global Memory

GPU: Manycore Microprocessor

Many processors each supporting many hardware threads

On-chip memory near processors

Shared global memory space (external DRAM)

© 2009 NVIDIA Corporation

Some perspective

GPUs are parallel co-processors, not accelerators

10 threads don’t matter; 10,000 threads do

Divide & conquer is often the way to win

Some irregularity is ok if the common case is regular

© 2009 NVIDIA Corporation

__global__

void saxpy(int n, float a,

float *x, float *y)

{

int i = blockIdx.x * blockDim.x

+ threadIdx.x;

if(i<n) y[i] = a * x[i] + y[i];

}

__host__

void example()

{

int B = 128,

P = ceil(n/B);

saxpy<<<P,B>>>(n, a, x, y);

}

CUDA in a Nutshell

KernelBlk 0 Blk p-1

• • •

GPU
M0

RAM

Mk

RAM
• • •

Schedule onto multiprocessors

© 2009 NVIDIA Corporation

CUDA Model of Parallelism

CUDA virtualizes the physical hardware

thread is a virtualized scalar processor (registers, PC, state)

block is a virtualized multiprocessor (threads, shared mem.)

Scheduled onto physical hardware without pre-emption

threads/blocks launch & run to completion

blocks should be independent

• • •
Block MemoryBlock Memory

Global Memory

© 2009 NVIDIA Corporation

NOT: Flat Multiprocessor

Global synchronization isn’t cheap

Global memory access times are expensive

cf. PRAM (Parallel Random Access Machine) model

Processors

Global Memory

© 2009 NVIDIA Corporation

NOT: Distributed Processors

Distributed computing is a different setting

cf. BSP (Bulk Synchronous Parallel) model, MPI

Interconnection Network

Processor MemoryProcessor Memory

• • •

© 2009 NVIDIA Corporation

Imperatives for Efficient Design

Expose abundant fine-grained parallelism

need 1000’s of threads for full utilization (30K max)

Maximize on-chip work

on-chip memory orders of magnitude faster

Minimize execution divergence

SIMT execution of threads in 32-thread warps

Minimize memory divergence

coalesced load/store across warp (~ vector load/store)

© 2009 NVIDIA Corporation

Coalescing Adjacent Loads

0

20

40

60

80

100

120

140

0 8 16 24 32

E
ff

e
c
ti

v
e
 B

a
n

d
w

id
th

(G

B
/s

)

Stride

float

double

void saxpy(int n, float a, float *x, float *y, int stride)

{

int i = blockIdx.x * blockDim.x + threadIdx.x;

if(i<n) y[i*stride] = a * x[i*stride] + y[i*stride];

}

86% of theoretical peak (GTX 280)

2x

© 2009 NVIDIA Corporation

Two regimes of parallel tasks

Many independent fine-grained tasks

assign 1 task to each thread

coordination mostly at kernel boundaries

Collection of coordinated parallel tasks

assign 1 task to each thread block

common case in divide & conquer algorithms

© 2009 NVIDIA Corporation

REDUCTION

© 2009 NVIDIA Corporation

Parallel Reduction

Summing up a sequence with 1 thread:
int sum = 0;

for(int i=0; i<N; ++i) sum += x[i];

Parallel reduction within 1 thread block:

each thread holds 1 element

stepwise partial sums in a tree fashion

B threads need log B steps

Parallel reduction of arbitrary arrays:

coordinate reductions within multiple blocks

© 2009 NVIDIA Corporation

Illustrating intra-block reduction

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2

Input (shared memory)

0 1 2 3 4 5 6 7

8 -2 10 6 0 9 3 7 -2 -3 2 7 0 11 0 2

0 1 2 3

8 7 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2

0 1

21 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2

0

41 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2

Final result

active threads

x[i] += x[i+8];

x[i] += x[i+4];

x[i] += x[i+2];

x[i] += x[i+1];

© 2009 NVIDIA Corporation

Reduction tree implementation

template<typename T>

__device__ T reduce(T *x)

{

unsigned int i = threadIdx.x;

unsigned int n = blockDim.x;

for(unsigned int offset=n/2; offset>0; offset/=2)

{

if(tid < offset)

x[i] += x[i + offset];

__syncthreads();

}

return x[0]; // Note that only thread 0 has full sum
}

© 2009 NVIDIA Corporation

Generic reduction implementation

template<typename T, typename OP>

__device__ T reduce(T *x, OP op)

{

unsigned int i = threadIdx.x;

unsigned int n = blockDim.x;

for(unsigned int offset=n/2; offset>0; offset/=2)

{

if(tid < offset)

x[i] = op(x[i], x[i + offset]);

__syncthreads();

}

return x[0]; // Note that only thread 0 has final result
}

must be commutative & associative

© 2009 NVIDIA Corporation

Coordinating blocks recursively

Divide N elements amongst P=N/B blocks

Reduce partial sums with (N/B)/B blocks & repeat

reduce reduce reduce reduce reduce reducereduce reduce

reduce reduce reduce reduce logB N steps

reduce reduce

reduce

© 2009 NVIDIA Corporation

Coordinating blocks directly

Assign N/P elements to each of P blocks

Collect P sums & reduce with 1 block

We’re done in 2 steps, but make sure P fills machine

reduce

reduce reduce reduce reduce reducereduce reduce

© 2009 NVIDIA Corporation

Directions for improvement

Pay attention to operator properties

associative? commutative? has inverse? has identity?

the fewer that are true, the more careful the code must be

e.g., reduction examples assume commutative w/ identity

Many opportunities for code optimization

remove inefficiencies

(auto-) tuning for different cases

© 2009 NVIDIA Corporation

Directions for optimization

Loop unrolling with fixed block sizes

almost always a good idea

Minimize unutilized threads

reduction example leaves half its threads idle

Vector loads can improve efficiency

float2, float4, …

Extra serial work per thread can improve efficiency

cf. vector loads

© 2009 NVIDIA Corporation

MERGE SORT

Designing efficient sorting algorithms for manycore GPUs,

Nadathur Satish, Mark Harris, and Michael Garland.

IPDPS 2009.

© 2009 NVIDIA Corporation

Why sort?

To sort data

To bring together all records with the same key

cf. hashing

To build data structures

CSR matrix, Bounding Volume Hierarchies, …

Once you have a fast sort, many things are easier

© 2009 NVIDIA Corporation

Merge Sort

Divide input array into 256-element tiles

Sort each tile independently

Produce sorted output with tree of merges

sort sort sort sort sort sortsort sort

merge merge mergemerge

merge merge

merge

© 2009 NVIDIA Corporation

Traditional sequential approach

Sorting each tile: take your pick

quicksort, heap sort, insertion sort, …

Merging two tiles: take next element one at a time

merge(A, B):
… if A or B is empty return the other …
if A[0]<B[0]:

first, A = A[0], A[1:]
else:

first, B = B[0], B[1:]

return first + merge(A, B)

© 2009 NVIDIA Corporation

Sorting a tile in parallel

Tiles are sized so that:

a single thread block can sort them efficiently

they fit comfortably in on-chip memory

Sorting networks are most efficient in this regime

we use odd-even merge sort

about 5-10% faster than comparable bitonic sort

Caveat: sorting networks may reorder equal keys

© 2009 NVIDIA Corporation

Odd-Even Merge Sort

template<typename T, typename Cmp>

__device__ void oddeven_sort(T *keys, int i, int n, Cmp lt)

{

for(unsigned int p=n/2; p>0; p/=2) {

unsigned int q=n/2, r=0, d=p;

while(q>=p) {

if(i<(n-d) && (i&p)==r) {

unsigned int j = i+d;

T xi = keys[i], xj = keys[j];

if(lt(xj,xi)) {

keys[i] = xj;

keys[j] = xi;

}

}

d = q-p; q = q/2; r = p;

__syncthreads();

}

}

}

Algorithm M, Section 5.2.2

The Art of Computer Programming, Vol 3

D. E. Knuth

© 2009 NVIDIA Corporation

Merging pairs of sorted tiles

Launch 1 thread block to process each pair of tiles

Load tiles into on-chip memory

Perform counting merge

Stored merged result to global memory

sort sort sort sort sort sortsort sort

merge merge mergemerge

© 2009 NVIDIA Corporation

Counting Merge

A[i-1] A[i] A[i+1] · · ·· · ·

B[j-1] B[j] B[j+1] · · ·· · ·

upper_bound(A[i], B) = count(j where A[i] ≤ B[j])

lower_bound(B[j], A) = count(i where B[j] < A[i])

Use binary search since A & B are sorted

© 2009 NVIDIA Corporation

Counting Merge

A[i-1] A[i] A[i+1] · · ·· · ·

B[j-1] B[j] B[j+1] · · ·· · ·

upper_bound(A[i], B) = count(j where A[i] ≤ B[j])

lower_bound(B[j], A) = count(i where B[j] < A[i])

scatter(A[i] -> C[i + upper_bound(A[i], B)])
scatter(B[j] -> C[lower_bound(B[j], A) + j])

© 2009 NVIDIA Corporation

Merging Larger Subsequences

Partition larger sequences into collections of tiles

Apply counting merge to each pair of tiles

sort sort sort sort sort sortsort sort

merge merge mergemerge

merge merge

merge

© 2009 NVIDIA Corporation

Two-way Partitioning Merge

Pick a splitting element from either A or B

Divide A and B into elements below/above splitter

Recurse

A[i] · · ·· · ·

A[i] A[j] > A[i]A[j] ≤ A[i]

B[j] > A[i]B[j] ≤ A[i]

A[i]A[j] ≤ A[i]

B[j] ≤ A[i]
merge :

A[j] > A[i]

B[j] > A[i]
merge :

found by binary search

© 2009 NVIDIA Corporation

Multi-way Partitioning Merge

Pick every 256th element of A & B as splitter

Apply merge recursively to merge splitter sets

recursively apply merge procedure

Split A & B with merged splitters

Merge resulting pairs of tiles (at most 256 elements)

256 256 256 256· · ·

B0

A0

B1

A1 A2

B2

· · ·

· · ·

© 2009 NVIDIA Corporation

Merge Sorting Rate

-

10

20

30

40

50

60

1,000 10,000 100,000 1,000,000 10,000,000

S
o

rt
in

g
 R

a
te

 (
p

a
ir

s
/s

e
c
)

M
il

li
o

n
s

Sequence Size (key-value pairs)

GTX 280

9800 GTX+

8800 Ultra

8800 GT

8600 GTS

© 2009 NVIDIA Corporation

SPARSE MATRICES

Implementing sparse matrix-vector multiplication on throughput-oriented processors,

Nathan Bell and Michael Garland.

Supercomputing ‘09

© 2009 NVIDIA Corporation

Sparse matrix-vector multiplication

Compute y ← Ax + y

where A is sparse and x, y are dense

Unlike dense methods, SpMV is generally

unstructured / irregular

entirely bound by memory bandwidth

© 2009 NVIDIA Corporation

Application

Iterative methods for linear systems

Conjugate Gradient, GMRES, etc.

100s or 1000s of SpMV operations (y = A x)

© 2009 NVIDIA Corporation

Application

Finite-Element Methods

Discretize PDEs on structured or unstructured meshes

Mesh determines matrix sparsity structure

© 2009 NVIDIA Corporation

Compressed Sparse Row (CSR)

3 0 1 0

0 0 0 0

0 2 4 1

1 0 0 1

data[7] = { 3, 1, 2, 4, 1, 1, 1 };

indices[7] = { 0, 2, 1, 2, 3, 0, 3 };

ptr[5] = { 0, 2, 2, 5, 7 };

Nonzero values

Column indices

Row pointers

Row 0 Row 2 Row 3

© 2009 NVIDIA Corporation

CSR SpMV Kernel (Serial)

data[7] = { 3, 1, 2, 4, 1, 1, 1 };

indices[7] = { 0, 2, 1, 2, 3, 0, 3 };

ptr[5] = { 0, 2, 2, 5, 7 };

Nonzero values

Column indices

Row pointers

Row 0 Row 2 Row 3

for (int row = 0; row < num_rows; row++){

float dot = 0;

int row_start = ptr[row];

int row_end = ptr[row + 1];

for (int jj = row_start; jj < row_end; jj++)

dot += data[jj] * x[indices[jj]];

y[row] += dot;

}

© 2009 NVIDIA Corporation

Parallelizing CSR SpMV

Straightforward approach

One thread per matrix row

3 0 1 0

0 0 0 0

0 2 4 1

1 0 0 1

Thread 0

Thread 1

Thread 2

Thread 3

© 2009 NVIDIA Corporation

CSR SpMV Kernel (CUDA)

data[7] = { 3, 1, 2, 4, 1, 1, 1 };

indices[7] = { 0, 2, 1, 2, 3, 0, 3 };

ptr[5] = { 0, 2, 2, 5, 7 };

Nonzero values

Column indices

Row pointers

Row 0 Row 2 Row 3

int row = blockDim.x * blockIdx.x + threadIdx.x;

if (row < num_rows){

float dot = 0;

int row_start = ptr[row];

int row_end = ptr[row + 1];

for (int jj = row_start; jj < row_end; jj++)

dot += data[jj] * x[indices[jj]];

y[row] += dot;

}

© 2009 NVIDIA Corporation

Comparing Kernels (Serial)

void

csr_spmv_kernel(const int num_rows,

const int * ptr,

const int * indices,

const float * data,

const float * x,

float * y)

{

for (int row = 0; row < num_rows; row++){

float dot = 0;

int row_start = ptr[row];

int row_end = ptr[row + 1];

for (int jj = row_start; jj < row_end; jj++)

dot += data[jj] * x[indices[jj]];

y[row] += dot;

}

}

© 2009 NVIDIA Corporation

Comparing Kernels (CUDA)

__global__ void

csr_spmv_kernel(const int num_rows,

const int * ptr,

const int * indices,

const float * data,

const float * x,

float * y)

{

int row = blockDim.x * blockIdx.x + threadIdx.x;

if (row < num_rows){

float dot = 0;

int row_start = ptr[row];

int row_end = ptr[row + 1];

for (int jj = row_start; jj < row_end; jj++)

dot += data[jj] * x[indices[jj]];

y[row] += dot;

}

}

© 2009 NVIDIA Corporation

Compare with OpenMP

void csrmul_openmp(… … … … … …)

{

#pragma omp parallel for

for(uint row=0; row<num_rows; ++row)

{

uint row_begin = Ap[row];

uint row_end = Ap[row+1];

... compute y[row] ...

}

}

OpenMP Kernel

__global__ void csrmul_kernel(… … … … … …)

{

uint row = blockIdx.x*blockDim.x + threadIdx.x;

if(row<num_rows)

{

uint row_begin = Ap[row];

uint row_end = Ap[row+1];

... compute y[row] ...

}

}

CUDA Kernel

© 2009 NVIDIA Corporation

Problems with simple CSR kernel

Execution divergence

Varying row lengths

Memory divergence

Minimal coalescing

3 0 1 0

0 0 0 0

0 2 4 1

1 0 0 1

Thread 0

Thread 1

Thread 2

Thread 3

data[7] = { 3, 1, 2, 4, 1, 1, 1 };

indices[7] = { 0, 2, 1, 2, 3, 0, 3 };

ptr[5] = { 0, 2, 2, 5, 7 };

Nonzero values

Column indices

Row pointers

#1 #0 #1 #0 #2 #1#0 Iteration

© 2009 NVIDIA Corporation

Regularizing SpMV with ELL format

Quantize each row to a fix length K

Layout in column-major order

yields full coalescing

3 1 *

* * *

2 4 1

1 1 *

Thread 0

Thread 1

Thread 2

Thread 3

Values

0 2 *

* * *

1 2 3

0 3 *

Columns

© 2009 NVIDIA Corporation

Exposing maximal parallelism

Use COO (Coordinate) format

list row, column, and value for every non-zero entry

Assign one thread to each non-zero entry

each thread computes an A[i,j]*x[j] product

sum products with segmented reduction algorithm

largely insensitive to row length distribution

data[7] = { 3, 1, 2, 4, 1, 1, 1 };

cols[7] = { 0, 2, 1, 2, 3, 0, 3 };

rows[7] = { 0, 0, 1, 1, 1, 2, 2 };

Nonzero values

Column indices

Row indices

© 2009 NVIDIA Corporation

Tradeoffs: Matrix Representations

Structured Unstructured

Format Threads Coalescing

CSR per row rare

ELL per row full

COO per entry full

HYB ELL+COO full

© 2009 NVIDIA Corporation

Granularity effects with 4M nonzeros

0

2

4

6

8

10

12

14

16

18

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

G
F

L
O

P
/s

Matrix Rows

COO CSR (scalar) ELL

© 2009 NVIDIA Corporation

Multicore comparison

Name Sockets Cores Clock (GHz) Notes

Cell 1 8 (SPEs) 3.2 IBM QS20 Blade (half)

Xeon 1 4 2.3 Intel Clovertown

Dual Cell 2 16 (SPEs) 3.2 IBM QS20 Blade (full)

Dual Xeon 2 8 2.3 2x Intel Clovertown

Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms.

Samuel Williams et al., Supercomputing 2007.

Source:

© 2009 NVIDIA Corporation

Sparse Matrix-Vector Multiplication (FP64)

0

2

4

6

8

10

12

14

16

G
F

L
O

P
/s

GTX 280 (CSR)

GTX 280 (HYB)

Cell (8 SPEs)

Xeon (4 cores)

Cell and Xeon Results from “Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms",

Williams et al, Supercomputing 2007

© 2009 NVIDIA Corporation

Sparse Matrix-Vector Multiplication (FP64)

0

2

4

6

8

10

12

14

16

G
F

L
O

P
/s

GTX 280 (CSR)

GTX 280 (HYB)

Dual Cell (16 SPEs)

Dual Xeon (8 cores)

Cell and Xeon Results from “Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms",

Williams et al, Supercomputing 2007

© 2009 NVIDIA Corporation

0

20

40

60

80

100

120

140

160

G
B

y
te

/s

COO CSR (scalar) CSR (vector) HYB

Effective bandwidth (FP64)

141.7 theoretical peak (GTX 280)

© 2009 NVIDIA Corporation

Questions?

http://www.nvidia.com/research

mgarland@nvidia.com

