
© Wen-mei W. Hwu and Nady Obeid 2009
VSCSE, University of Illinois, Urbana-Champaign

1

VSCSE Summer School

Accelerators for Science and Engineering
Applications: GPUs and Multi-cores

Understanding the labs

© Wen-mei W. Hwu and Nady Obeid 2009
VSCSE, University of Illinois, Urbana-Champaign

2

A typical CUDA program
void CUDA_interface (…){

//allocate memory space in global device memory for input data
cudaMalloc(…);
//copy input data from host to the allocated device space
cudaMemcpy(…);
//allocate memory space in global device memory for the output
cudaMalloc(…);

//define block and grid size for the kernel;
dim3 grid (x,y);
dim3 block (x,y,z);

// launch kernel
CUDA_kernel<<<grid,block>>>(…);

//copy output data from device memory to the host
cudaMemcpy(…);

//free all device allocated memory (inputs and outp uts)
cudaFree(…);

}

© Wen-mei W. Hwu and Nady Obeid 2009
VSCSE, University of Illinois, Urbana-Champaign

3

A typical CUDA program
void CUDA_kernel (…){

//declare a shared memory array (optional)

__shared__ array_s[…];

//figure out index into different arrays in terms o f
blockIdx, threadIdx, and block_size

int index = …;

//bring in data from global memory (into registers, or
shared memory)

…

//Do the computation

…

//Copy data back to global memory (from registers o r
global memory)

…

}

© Wen-mei W. Hwu and Nady Obeid 2009
VSCSE, University of Illinois, Urbana-Champaign

4

Lab 1.1

• Objective: perform a matrix-matrix multiplication
M*N = P

• Assumptions/Requirements:
– There is no use of shared memory.
– We operate on data in global memory and keep a running sum in a

register. Every thread is ony responsible for computing its element.

• Difficulty levels
– DL1: All the lines are given to you, with some function parameters

missing, as well as some values of declared variables
– DL2: Some lines are completely omitted

• Functions to modify:
– Interface function runTest(…) in “matrixmul.cu”
– Kernel function matrixMul(…) in “matrixmul_kernel.cu”

© Wen-mei W. Hwu and Nady Obeid 2009
VSCSE, University of Illinois, Urbana-Champaign

5

Lab 1.2

• Objective: perform a parallel reduction on an array to
compute the total sum.

• Assumptions/Requirements:
– There is only one tile/block
– The array has exactly 512 elements in it

• Difficulty levels
– DL1: All function calls are given to you with missing parameters.

Reduction code inside the kernel has been omitted.
– DL2: Some function calls have been omitted. Entire body of the

kernel function has been omitted

• Functions to modify:
– Interface function computeOnDevice(…) in vector_reduction.cu
– Kernel function reduction(…) in vector_reduction_kernel.cu

© Wen-mei W. Hwu and Nady Obeid 2009
VSCSE, University of Illinois, Urbana-Champaign

6

Lab 2.1

• Objective: perform a matrix-matrix multiplication
M*N = P

• Assumptions/Requirements:
– We use shared memory to load in intput data tiles
– Every thread is reponsible for loading data from global to shared

memory, and computing the value of 1 output element.

• Difficulty levels
– DL1: All the lines are given to you, with some array indeces missing

in the kernel function.
– DL2: All lines are given to you, with some some array indeces

missing, as well as the initial values of some variables.

• Functions to modify:
– Kernel function matrixMul(…) in “matrixmul_kernel.cu”

© Wen-mei W. Hwu and Nady Obeid 2009
VSCSE, University of Illinois, Urbana-Champaign

7

Lab 2.2

• Objective: perform a parallel reduction on an array to
compute the total sum.

• Assumptions:
– The array can be of any size.
– The code should be able to handle sizes larger than 1 tile size

• Difficulty levels
– DL1: Timer and kernel synchronization omitted in interface

function. Kernel code given works for 1 tile of 512 elements.
– DL2: Timer and kernel synchronization omitted in interface

function. Kernel code removed.

• Functions to modify:
– Interface function runTest(…) in reduction_largearray.cu
– Kernel function reductionArray(…) in

reduction_largearray_kernel.cu

© Wen-mei W. Hwu and Nady Obeid 2009
VSCSE, University of Illinois, Urbana-Champaign

8

Lab 3.1

• Objective: tune performance of matrix-matrix multiplication
M*N = P

• Assumptions/Requirements:
– Tune the performance of the program, using predefined macros.

• Difficulty levels
– N/A.

• Functions to modify:
– Parameters in “marixmul.h”

• Additional objectives:
– Use the CUDA profiler to profile your program.

© Wen-mei W. Hwu and Nady Obeid 2009
VSCSE, University of Illinois, Urbana-Champaign

9

Lab 3.2

• Objective: optimize the performance of an MRI
application.

• Assumptions:
– N/A

• Difficulty levels
– DL1: Using predefined macros in “computeQ.h”, tune

the application and observe its performance.
– DL2: Modify the unoptimized kernel in “computeQ.cu”

to improve performance.

• Functions to modify:
– See Difficulty levels above.

© Wen-mei W. Hwu and Nady Obeid 2009
VSCSE, University of Illinois, Urbana-Champaign

10

Questions?

