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WHO AM I? 

•  Graduate student in computer science at Illinois working 
with ILLIAC IV, one of the first parallel computers 

•  Atmospheric scientist using high performance computing 
to study severe weather since the late 1960’s when three 
dimensional storm modeling became possible on small 
grids (25 x 25 x 20 spatial grid points) 

•  Today I am working with a number of other researchers to 
prepare for using Blue Waters to understand tornado 
formation, evolution, and demise using 10 m resolution 
using 10,000 x 10,000 x 2,000 grid points (100 x 100 x 20 
km domain) 
•  That is 108 times more grid points since the mid 1970’s 
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WHO AM I? 

•  Professor, UIUC in Atmospheric Sciences 
•  Chief Scientist, NCSA 

•  Co-PI on original unsolicited proposal in the mid 1980’s to form 
NCSA  

•  Director, CyberApplications and Communities, NCSA 
•  Technical Advisory Committee member, Blue Waters 
•  Head of the storm modeling research group in the 

Department of Atmospheric  
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WHO AM I?   
                                              A VISUAL STORY   
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Here’s That Strong Updraft 
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Supercell and Splits 

ModeledObserved





Animation from the simulation data ( ~ 1 terabyte) 
nominated for an Academy Award I 1989



New, growing 
cells 

Dry air behind 
dryline - strong 
southwest winds. 

Green surface: 
water vapor 
(eroded away 
as line moves east) 

Taller storm 
tops - older, 
more intense 
storms 







WHO ARE YOU (Departments)? 
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Astronomy 15 

Geophysical 
Sciences 

3 

Chemistry 8 

Computer Science 14 

Applied Math 6 

Physics 8 

Biology 5 

Engineering 42 



WHAT DO YOU KNOW? 
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HPC Continues to Enable New Discovery 

•  Simulation of hurricanes 
•  Simulation of global 

climate change  
•  Simulation of molecular 

dynamics 
•  Simulation of hypersonic 

turbulence  
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Addressing Complexity 

•  Today’s grand challenge problems often involve  
•  Higher resolution 
•  Use a variety of physics packages 
•  Involve coupling of models (e.g. climate) 
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Model Resolution Influences 
Precipitation 

CCM3 extreme precipitation events depend on model resolution. 
Here we are using as a measure of extreme precipitation events the 
99th percentile daily precipitation amount. Increasing  resolution helps 
the CCM3 reproduce this measure of extreme daily precipitation 
events. 

Source:  Phil Jones



Climate and Complexity:  Mul2ple Physics 

Source:  Phil Jones
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Source:  Phil Jones



  Boeing Computa2onal Fluid Dynamics Penetra2on:  Mul2ple Models 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Thanks to HPC, virtual prototyping was used to develop the 787 Dreamliner. Boeing conducted tens of thousands 
of virtual wing prototypes, yet only 11 physical wind tunnel tests. 

Image courtesy The Boeing Company.
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Addressing Complexity 

•  Today’s grand challenge problems often involve  
•  Higher resolution 
•  Use a variety of physics packages 
•  Involve coupling of models (e.g. climate) 

•  Solving these problems typically requires teams with 
expertise in science, computational science, computer 
science 
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Today’s Scientist, Researcher, or Student’s 
Ecosystem 

Teams and  
Collaborations Visualizations Data 

Technology Software and 
Cyberinfrastructure 

Observations Concepts 

Mathematical 
Equations 



Addressing Complexity 

•  Today’s grand challenge problems often involve  
•  Higher resolution 
•  Use a variety of physics packages 
•  Involve coupling of models (e.g. climate) 

•  Solving these problems typically requires teams with 
expertise in science, computational science, computer 
science 

•  Model development for solving these problems 
•  Takes years 
•  Involves community contributions to the code 
•  Involves development/use of simulation frameworks to remove 

the computational and workflow complexities as much as 
possible from the purview of the researcher  
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Weather Research and Forecast Model 

•  Large collaborative effort to develop 
next-generation community model with 
direct path to operations 

•  Advanced Software Architecture 
•  Modular, flexible, extensible 
•  Portable and efficient 
•  Designed for HPC 

•  Applications 
•  Atmospheric Research 
•  Numerical Weather Prediction 
•  Coupled modeling systems 
•  Air quality research/prediction 
•  High resolution regional climate 

•  4000+ registered users 
•  Operations, research (weather and 

regional climate), education, 
operations 

ARW solver 

Physics Interfaces 

Plug-compatible physics 
Plug-compatible physics 

Plug-compatible physics 
Plug-compatible physics 

Plug-compatible physics 

NMM solver 

Top-level Control, 
Memory Management, Nesting,  

Parallelism, External APIs  
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Source:  John Michalakes, NCAR



WRF Supported Platforms 
Vendor Hardware OS Compiler
Apple G5 MacOS IBM

X1, X1e UNICOS Cray
XT3/XT4 (Opteron) Linux PGI

Alpha Tru64 Compaq
Linux Intel
HPUX HP

Power-3/4/5/5+ AIX IBM
Blue Gene/L IBM

Opteron Pathscale, PGI
NEC SX-series Unix Vendor

Itanium-2 Linux Intel
MIPS IRIX SGI

Sun UltraSPARC Solaris Sun
Xeon and Athlon

Itanium-2 and Opteron

Cray Inc.

Intel, PGI

HP/Compaq

SGI

various

Itanium-2

IBM
Linux

Linux and 
Windows CCS

   
Petascale precursor systems 

Source:  John Michalakes, NCAR



Source:  John Michalakes, NCAR



WRF Software Architecture 

•  Hierarchical software architecture 
•  Insulate scientists' code from parallelism and other architecture/

implementation-specific details 
•  Well-defined interfaces between layers, and external packages for 

communications, I/O, and model coupling facilitates code reuse and 
exploiting of community infrastructure, e.g. ESMF. 

Registry

Source:  John Michalakes, NCAR



WRF Software Architecture 
•  Driver Layer 

•  Allocates, stores, decomposes model domains, represented abstractly 
as single data objects 

•  Contains top-level time loop and algorithms for integration over nest hierarchy 
•  Contains the calls to I/O, nest forcing and feedback routines supplied by the 

Mediation Layer 
•  Provides top-level, non package-specific access to communications, I/O, etc. 
•  Provides some utilities, for example module_wrf_error, which is used for 

diagnostic prints and error stops 
•  Mediation Layer 

•  Provides to the Driver layer 
•  Solve solve routine, which takes a domain object and advances it one 

time step 
•  I/O routines that Driver calls when it is time to do some input or output 

operation on a domain 
•  Nest forcing and feedback routines 
•  The Mediation Layer and not the Driver knows the specifics of what needs 

to be done 
•  The sequence of calls to Model Layer routines for doing a time-step is known 

in Solve routine 
•  Responsible for dereferencing driver layer data objects so that individual fields 

can be passed to Model layer Subroutines 
•  Calls to message-passing are contained here 

Source:  John Michalakes, NCAR



WRF Software Architecture 
•  Model Layer 

•  Contains the information about the model itself, with machine 
architecture and implementation aspects abstracted out and 
moved into layers above 

•  Contains the actual WRF model routines that are written to 
perform some computation over an arbitrarily sized/shaped 
subdomain 

•  All state data objects are simple types, passed in through argument 
list 

•  Model Layer routines don’t know anything about communication or I/
O; and they are designed to be executed safely on one thread – they 
never contain a PRINT, WRITE, or STOP statement 

•  These are written to conform to the Model Layer Subroutine Interface 
(more later) which makes them “tile-callable”  

•  Registry: an “Active” data dictionary 
•  Tabular listing of model state and attributes  
•  Large sections of interface code generated automatically 
•  Scientists manipulate model state simply by modifying Registry, 

without further knowledge of code mechanics  

Source:  John Michalakes, NCAR



     Complexity, Cyberinfrastructure, and HPC 

National Science Foundation’s  
Cyberinfrastructure 

    Cyberinfrastructure is the 
coordinated aggregate of 

software, hardware and other 
technologies, as well as human 
expertise, required to support 
current and future discoveries 

in science and engineering.  
NSF Blue Ribbon 
Panel (Atkins) 
Report provided 
compelling and 
comprehensive 
vision of an 
integrated 
Cyberinfrastructure  

“Thanks to Cyberinfrastructure and 
information systems, today’s scientific 
tool kit includes  distributed systems of 

hardware, software, databases and 
expertise that can be accessed in 

person or remotely.” 

Arden Bement, NSF Director 
February, 2005 

Source:  Fran Berman





LEAD and a New Level of Complexity 

 LEAD was funded to develop a comprehensive national 
cyberinfrastructure for mesoscale meteorology research, 
education, and prediction.  It is addressing the fundamental 
information technology (IT) research challenges needed to 
create an integrated, scalable environment for  

  identifying,  
  accessing,  
  preparing,  
  assimilating,  
  predicting (WRF) 
  managing,  
  analyzing,  
  mining, and  
  visualizing  
 a broad array of meteorological data and model output, 
independent of format and physical location and having 
dynamically adaptive, on-demand response.  



April 1996 Illinois Tornadoes 
Storm interaction - a focus of Project VORTEX-II (2009)

Jewett and Wilhelmson - NCSA

Source:  Brian Jewett







Automa2cally Triggered Forecasts 
h>p://banff.atmos.uiuc.edu/trigger/ 





Week in Review – Opportunities Abound 
•  Use of multicore technology and accelerators form the basis for 

most petascale computing over the next decade  
•  Core counts today on the largest systems exceed 50,000 
•  Cache friendly codes will perform best on most systems – i.e. there 

are many flops per memory fetch 
•  Hybrid programming (e.g. using OpenMP on the SMP and MPI 

across SMPs) may boost performance for some applications 
•  Fault – tolerance:  remember to checkpoint your data or implement a 

fault tolerance schema 
•  Analysis and visualization may need to be done inline – as a 

simulation proceeds – if the data volume being produced is 
voluminous (petabytes) 

•  Document your code 
•  Instrument your code for debugging and performance analysis 
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Why and When to Use Charm++ and AMPI 

40

•  When you need automa2c 
dynamic load balancing 

•  Automa2c overlap of 
computa2on / communica2on 

•  Parallel Composi2on:  
–  If you are composing mul2ple 

parallel modules  

–  Charm++ can interleave their 
execu2on, overlapping idle 2me 

•  Automa2c fault tolerance 
–  Caveat: if the machine/scheduler 

doesn’t kill a job when a node fails 

•  Mature, scalable system, with support 
for interac2ve debugging, live 
visualiza2on, performance tools,  

•  Charm++: is C++ programming, 
but can interface with Fortran 

•  AMPI: C, C++, Fortran 
–  Gets most benefits of Charm+

+ for MPI programs 

–  Currently requires a small 
conversion effort on some 
machines (automated on 
many machines) 



8/19/09 SciDAC-08 41

Migratable Objects (aka Processor Virtualiza2on) 

User View

System implementation

Programmer: [Over] decomposition 
into virtual processors

Runtime: Assigns VPs to processors

Enables adaptive runtime strategies

Implementations: Charm++, AMPI

•  Software engineering
–  Number of virtual processors can be 

independently controlled
–  Separate VPs for different modules

•  Message driven execution
–  Adaptive overlap of communication
–  Predictability : 

•  Automatic out-of-core
•  Prefetch to local stores

–  Asynchronous reductions
•  Dynamic mapping

–  Heterogeneous clusters
•  Vacate, adjust to speed, share

–  Automatic checkpointing
–  Change set of processors used
–  Automatic dynamic load balancing
–  Communication optimization

Benefits



Why Use Libraries:  The Reality For DGEMM 

•  N=100 
•  1818 MF (1.1ms) – great performance compared to core peak 

performance 

•  N=1000 
•  335 MF (6s) – should be ~1 s based on core peak 

•  What this tells us: 
•  Obvious expression of algorithms are not transformed into 

leading performance 
•  Compilers do not magically solve many performance problems 
•  We need to understand in detail the system architecture we are 

working on to write fast code (e.g. effectively use the cache and 
network structure of the system) to the degree we can control it 



Faster (Better Algorithms) Often Available in 
Libraries 

•  Modern algorithms can provide significantly greater performance 
•  Example: Solving systems of linear equations 

•  For most of the history of computing, as much of an 
improvement in performance in solving systems of linear 
equations arising from PDEs came from better algorithms as 
from faster hardware 

•  From Gauss – Seidel to MultiGrid solvers 



Higher Level Parallel I/O Libraries Are Important 

•  Without careful consideration, I/O can dominate your wall 
clock time 

•  Scientific applications may use significant I/O capabilities 
in preparing data for initializing a simulation, for 
checkpointing or other fault tolerant schema, and for 
writing out data to analyze and visualize later 

•  netCDF and HDF5 are two popular “higher level” I/O 
libraries 
•  Abstract away details of file layout 
•  Provide standard, portable file formats 
•  Include metadata describing contents 

44



Blue Waters Partnership 
http://www.ncsa.illinois.edu/BlueWaters/ 
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Credit: © 2007 JupiterImages Corporation
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Blue Waters Computing System 
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System Attributes        Blue Waters* 
Vendor  IBM 
Processor  IBM Power7   
Sustained Performance (PF)  ~1 
SMP size  ≥16   
Number of Processor Cores (GB)  >200,000 
Memory per core  ≥2 
Amount of Disk Storage (PB)  >10 
Amount of Archival Storage (PB)  >500 
External Bandwidth (Gbps)  100-400 

*  Reference petascale computing system (no accelerators). 



Blue Waters Computing System 

•  Be capable of optimized simultaneous multithreading 
•  Be capable of vector multimedia extension with four or 

more floating-point operations per cycle. 
•  Feature multiple levels of cache (private L1 and L2 

caches for each core and an L3 shared cache) 
•  Support 10 or more data streams 
•  Provide an integrated network interconnect with 

significantly reduced latency and increased bandwidth.  
•  Allow overlapping of computation with I/O and node 

communication through RDMA technology 

Imaginations unbound 



Blue Waters Computing System 

•  System software:  
•  IBM's LoadLeveler for resource management 
•  Blue Waters software will include Fortran, Co-Array 

Fortran,  C/C++, and UPC compilers 
•  GPFS file system and software 

•  Applications libraries: 
•  MASS, ESSL, and Parallel ESSL math libraries 
•  MPI I/O 
•  VisIt (parallel visualization) 

Imaginations unbound 



Blue Waters Computing System 

•  Programming models and environments: 
•  MPI and MPI2 
•  OpenMP for shared memory 
•  Partitioned Global Address Space languages 
•  Low-level active messaging layer 
•  Debugging tools 
•  HPC and HPCS Performance Toolkits  
•  The CHARM++ and Cactus frameworks 
•  Eclipse-based application framework to support 

development  

Imaginations unbound 



Petascale Computing – Expertise needed in 
•  Application algorithms: serial and parallel, non-numeric and numeric 

algorithms, libraries, shared memory techniques, hybrid method tuning, 
SIMD/vectorization.  

•  System hardware: architecture, cache use, instruction-level parallelism, 
communication/synchronization topology, I/O.  

•  System software: operating systems, compilers, performance tools, MPI/
OpenMP, debuggers, job scheduling, file systems, archiving, system check 
pointing, dynamic reconfiguration, fault recovery, code development 
environments.  

•  Performance analysis: understanding software/hardware interaction, 
identifying current performance bottlenecks and projecting future 
performance, optimizing and measuring performance.  

•  Modeling and projection: application and algorithm analysis and 
developing models of performance to explain current or future performance.  

•  Optimization and benchmarking: software development 
and :enhancement, measuring and verifying performance and correctness.  

•  Application simulation expertise in simulation methodology, including 
execution-driven, trace-driven, whole system, and network simulation. 
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Pathways to Blue Waters Workshop:  
Communication Intensive Algorithms and Applications 

•  Held at NCSA last October 
•  Attended by nearly 100 researchers from universities and other 

organizations 
•  Goals 

•  To identify key challenges/issues in scaling applications efficiently to >200,000 cores  
•  To learn about and discuss different communication fabrics and programming strategies 

for efficiently using them  
•  To gain a better understanding of algorithm/application communication needs and to 

identify programming strategies for dealing with them  
•  To identify I/O performance issues and potential solutions  
•  To identify issues and associated strategies for debugging and running very large 

applications  
•  To encourage communication and sharing among groups preparing for sustained 

petascale computing  

•  Answers to a questionnaire reveals a diversity of responses and the need 
to think carefully how to best modify or develop peta capable codes 
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What programming and scripting languages 
do you most commonly use? 

•  Fortran 77, 90, 95 
•  C/C++ 
•  Perl  
•  Python C/C++ 
•  Shell scripting 
•  APIs such as OpenMP and 

MPI 
•  Bash  

•  Super Instruction Assembly 
Language (SIAL) 

•  Ruby 
•  Tcl  
•  xml 
•  MATLAB and Star-P 



What math or statistical library routines do 
you most commonly use? 

•  BLAS (DGEMM) 
•  FFTW, FFTW3 (3d FFT) 
•  PETSc 
•  Linear algebra, nonlinear 

equation solvers, 
differential-algebraic 
equation solvers 

•  appspack. 
•  Intel MKL 
•  LAPACK 
•  SCALAPACK 
•  ESSL 
•  PESSL 
•  GSL 

•  HYPRE 
•  NAG  
•  A++/P++ 
•  Overture 
•  SPRNG Parallel Random 

Number Generator 
•  IBM optimized math intrinsic 

libraries (mass,massv) 
•  ARPACK 
•  MUMPS 
•  SuperLU 
•  PARPACK 
•  IMSL 



What communication libraries do you most 
commonly use? 

•  MPI 
•  OpenMP 
•  MPI+ 
•  SciDAC API library QMP  
•  GA 
•  ARMCI  
•  mixed-mode MPI +  
•  Pthreads  
•  Intels TBB 
•  Charm++  
•  PNNL Global Arrays (GA) 



What performance tools do you most 
commonly use? 

•  RDTSC cycle counter 
instruction 

•  Tau 
•  MPITrace  
•  PAPI 
•  IPM  
•  cachegrind  
•  Vampir 
•  Vtune  
•  hpmcount  
•  PERI 
•  Gprof 

•  lcaperf  
•  Profiling tools from 

PETSc   
•  Hpm 
•  Shark 
•  Osiris has timing 

(MPI_Wtime) in the code 
•  MPIP 
•  Jumpshot 
•  CrayPAT 



What debugging tools do you most 
commonly use? 

•  Objdump coupled with output from exceptions 
•  Printf 
•  TotalView 
•  gdb  
•  Visual studio for single processor 
•  dbx  
•  Eclipse  
•  valgrind  
•  cscope 
•  Objdump 
•  Super Instruction Processor (SIP) Tools 
•  DDT 



Petascale Code Development 
•  Codes need to run on a variety of systems and therefore good code 

design and choice of algorithms is important (e.g. isolate parts of a code 
as much as possible that will require changes when moving from one 
system to another) 

•  Code test suites are important for validating model results 
•  Code writing skills need to be mastered over time 
•  Code development for petascale systems takes time – think and design 

before you write code 
•  Avoid barriers whenever you can 
•  Ensure that data is moved with large messages whenever possible  
•  Code debugging 

•  be patient and get a good night’s sleep if you are tired 
•  Sometimes it helps to start with the code and check the algorithms by writing them 

down from the code 

•  Admonition:  learn from those who have gone before – you are not 
alone! 
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Organizers 
Support staff at all sites 
Presenters 
Attendees 

•  For coming 
•  For good questions 
•  For working hard at the hands-on exercises 
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