
Scaling to the Petascale – Workshop Review – August 7, 2009

BROUGHT TO YOU BY
Bob Wilhelmson

bw@ncsa.uiuc.edu

WHO AM I?

•  Graduate student in computer science at Illinois working
with ILLIAC IV, one of the first parallel computers

•  Atmospheric scientist using high performance computing
to study severe weather since the late 1960’s when three
dimensional storm modeling became possible on small
grids (25 x 25 x 20 spatial grid points)

•  Today I am working with a number of other researchers to
prepare for using Blue Waters to understand tornado
formation, evolution, and demise using 10 m resolution
using 10,000 x 10,000 x 2,000 grid points (100 x 100 x 20
km domain)
•  That is 108 times more grid points since the mid 1970’s

Scaling to the Petascale – Workshop Review – August 7, 2009

WHO AM I?

•  Professor, UIUC in Atmospheric Sciences
•  Chief Scientist, NCSA

•  Co-PI on original unsolicited proposal in the mid 1980’s to form
NCSA

•  Director, CyberApplications and Communities, NCSA
•  Technical Advisory Committee member, Blue Waters
•  Head of the storm modeling research group in the

Department of Atmospheric

Scaling to the Petascale – Workshop Review – August 7, 2009

WHO AM I?
 A VISUAL STORY

Scaling to the Petascale – Workshop Review – August 7, 2009

Strong
Updraft

Here’s That Strong Updraft

Animation
Look
down
each

column

U
p
d
r
a
f
t

i
n

M
o
t
i
o
n

Supercell and Splits

ModeledObserved

Animation from the simulation data (~ 1 terabyte)
nominated for an Academy Award I 1989

New, growing
cells

Dry air behind
dryline - strong
southwest winds.

Green surface:
water vapor
(eroded away
as line moves east)

Taller storm
tops - older,
more intense
storms

WHO ARE YOU (Departments)?

Scaling to the Petascale – Workshop Review – August 7, 2009

Astronomy 15

Geophysical
Sciences

3

Chemistry 8

Computer Science 14

Applied Math 6

Physics 8

Biology 5

Engineering 42

WHAT DO YOU KNOW?

Scaling to the Petascale – Workshop Review – August 7, 2009

HPC Continues to Enable New Discovery

•  Simulation of hurricanes
•  Simulation of global

climate change
•  Simulation of molecular

dynamics
•  Simulation of hypersonic

turbulence

Scaling to the Petascale – Workshop Review – August 7, 2009

Addressing Complexity

•  Today’s grand challenge problems often involve
•  Higher resolution
•  Use a variety of physics packages
•  Involve coupling of models (e.g. climate)

Scaling to the Petascale – Workshop Review – August 7, 2009

Model Resolution Influences
Precipitation

CCM3 extreme precipitation events depend on model resolution.
Here we are using as a measure of extreme precipitation events the
99th percentile daily precipitation amount. Increasing resolution helps
the CCM3 reproduce this measure of extreme daily precipitation
events.

Source: Phil Jones

Climate and Complexity:  Mul2ple Physics 

Source: Phil Jones

Modeling Climate Complexity:  
Mul$ple Models

Ocean
POP

Ice
CICE/CSIM

Atmosphere
CAM

Land
LSM/CLM

Flux Coupler

7 States
10 Fluxes

6 States
6 Fluxes

4 States
3 Fluxes

7 States
9 Fluxes

6 Fluxes 11 States
10 Fluxes

6 States
13 Fluxes

6 States
6 Fluxes

Once

Once
Once

Once

per
per

per per

day

hour

hour

hour

NSF/DOE
Physical Models
(No biogeochem) 150km

100km

Source: Phil Jones

  Boeing Computa2onal Fluid Dynamics Penetra2on:  Mul2ple Models 

Scaling to the Petascale – Workshop Review – August 7, 2009

Thanks to HPC, virtual prototyping was used to develop the 787 Dreamliner. Boeing conducted tens of thousands
of virtual wing prototypes, yet only 11 physical wind tunnel tests.

Image courtesy The Boeing Company.

High-Speed Wing
Design

Cab Design

Engine/Airframe
Integration

Inlet Design
Inlet Certification

Exhaust
System Design

Cabin
Noise

Community Noise

Wing-Body
Fairing Design

Vertical Tail and
Aft Body Design

Design For
Stability &

Control

High-Lift Wing
Design

APU Inlet
And Ducting

ECS Inlet
Design

APU and Propulsion
Fire Suppression

Nacelle Design

Thrust Reverser
Design

Design for FOD
Prevention

Aeroelastics

Much CFD
Opportunities: higher

accuracy and expanded complexity

Some CFD
Opportunities: significant increases in design

process speed and application

Icing

Air Data
System
Location

Connexion
Antenna

Vortex Generator
Placement

Planform
Design

Buffet
Boundary

Wake Vortex Alleviation
Reynolds Number Corrections for

Loads and S&C

Flutter

Control Failure
Analysis

Wind Tunnel Corrections

Design For
Loads

Wing Tip Design

Wing
Controls

Avionics Cooling

Interior
Air Quality

Engine Bay Thermal Analysis

CFD opportunity

Addressing Complexity

•  Today’s grand challenge problems often involve
•  Higher resolution
•  Use a variety of physics packages
•  Involve coupling of models (e.g. climate)

•  Solving these problems typically requires teams with
expertise in science, computational science, computer
science

Scaling to the Petascale – Workshop Review – August 7, 2009

Today’s Scientist, Researcher, or Student’s
Ecosystem

Teams and
Collaborations Visualizations Data

Technology Software and
Cyberinfrastructure

Observations Concepts

Mathematical
Equations

Addressing Complexity

•  Today’s grand challenge problems often involve
•  Higher resolution
•  Use a variety of physics packages
•  Involve coupling of models (e.g. climate)

•  Solving these problems typically requires teams with
expertise in science, computational science, computer
science

•  Model development for solving these problems
•  Takes years
•  Involves community contributions to the code
•  Involves development/use of simulation frameworks to remove

the computational and workflow complexities as much as
possible from the purview of the researcher

Scaling to the Petascale – Workshop Review – August 7, 2009

Weather Research and Forecast Model

•  Large collaborative effort to develop
next-generation community model with
direct path to operations

•  Advanced Software Architecture
•  Modular, flexible, extensible
•  Portable and efficient
•  Designed for HPC

•  Applications
•  Atmospheric Research
•  Numerical Weather Prediction
•  Coupled modeling systems
•  Air quality research/prediction
•  High resolution regional climate

•  4000+ registered users
•  Operations, research (weather and

regional climate), education,
operations

ARW solver

Physics Interfaces

Plug-compatible physics
Plug-compatible physics

Plug-compatible physics
Plug-compatible physics

Plug-compatible physics

NMM solver

Top-level Control,
Memory Management, Nesting,

Parallelism, External APIs

m
ed

ia
tio

n
dr

iv
er

m

od
el

Source: John Michalakes, NCAR

WRF Supported Platforms
Vendor Hardware OS Compiler
Apple G5 MacOS IBM

X1, X1e UNICOS Cray
XT3/XT4 (Opteron) Linux PGI

Alpha Tru64 Compaq
Linux Intel
HPUX HP

Power-3/4/5/5+ AIX IBM
Blue Gene/L IBM

Opteron Pathscale, PGI
NEC SX-series Unix Vendor

Itanium-2 Linux Intel
MIPS IRIX SGI

Sun UltraSPARC Solaris Sun
Xeon and Athlon

Itanium-2 and Opteron

Cray Inc.

Intel, PGI

HP/Compaq

SGI

various

Itanium-2

IBM
Linux

Linux and
Windows CCS

Petascale precursor systems

Source: John Michalakes, NCAR

Source: John Michalakes, NCAR

WRF Software Architecture

•  Hierarchical software architecture
•  Insulate scientists' code from parallelism and other architecture/

implementation-specific details
•  Well-defined interfaces between layers, and external packages for

communications, I/O, and model coupling facilitates code reuse and
exploiting of community infrastructure, e.g. ESMF.

Registry

Source: John Michalakes, NCAR

WRF Software Architecture
•  Driver Layer

•  Allocates, stores, decomposes model domains, represented abstractly
as single data objects

•  Contains top-level time loop and algorithms for integration over nest hierarchy
•  Contains the calls to I/O, nest forcing and feedback routines supplied by the

Mediation Layer
•  Provides top-level, non package-specific access to communications, I/O, etc.
•  Provides some utilities, for example module_wrf_error, which is used for

diagnostic prints and error stops
•  Mediation Layer

•  Provides to the Driver layer
•  Solve solve routine, which takes a domain object and advances it one

time step
•  I/O routines that Driver calls when it is time to do some input or output

operation on a domain
•  Nest forcing and feedback routines
•  The Mediation Layer and not the Driver knows the specifics of what needs

to be done
•  The sequence of calls to Model Layer routines for doing a time-step is known

in Solve routine
•  Responsible for dereferencing driver layer data objects so that individual fields

can be passed to Model layer Subroutines
•  Calls to message-passing are contained here

Source: John Michalakes, NCAR

WRF Software Architecture
•  Model Layer

•  Contains the information about the model itself, with machine
architecture and implementation aspects abstracted out and
moved into layers above

•  Contains the actual WRF model routines that are written to
perform some computation over an arbitrarily sized/shaped
subdomain

•  All state data objects are simple types, passed in through argument
list

•  Model Layer routines don’t know anything about communication or I/
O; and they are designed to be executed safely on one thread – they
never contain a PRINT, WRITE, or STOP statement

•  These are written to conform to the Model Layer Subroutine Interface
(more later) which makes them “tile-callable”

•  Registry: an “Active” data dictionary
•  Tabular listing of model state and attributes
•  Large sections of interface code generated automatically
•  Scientists manipulate model state simply by modifying Registry,

without further knowledge of code mechanics

Source: John Michalakes, NCAR

 Complexity, Cyberinfrastructure, and HPC

National Science Foundation’s
Cyberinfrastructure

 Cyberinfrastructure is the
coordinated aggregate of

software, hardware and other
technologies, as well as human
expertise, required to support
current and future discoveries

in science and engineering.
NSF Blue Ribbon
Panel (Atkins)
Report provided
compelling and
comprehensive
vision of an
integrated
Cyberinfrastructure

“Thanks to Cyberinfrastructure and
information systems, today’s scientific
tool kit includes distributed systems of

hardware, software, databases and
expertise that can be accessed in

person or remotely.”

Arden Bement, NSF Director
February, 2005

Source: Fran Berman

LEAD and a New Level of Complexity

 LEAD was funded to develop a comprehensive national
cyberinfrastructure for mesoscale meteorology research,
education, and prediction. It is addressing the fundamental
information technology (IT) research challenges needed to
create an integrated, scalable environment for

 identifying,
 accessing,
 preparing,
 assimilating,
 predicting (WRF)
 managing,
 analyzing,
 mining, and
 visualizing
 a broad array of meteorological data and model output,
independent of format and physical location and having
dynamically adaptive, on-demand response.

April 1996 Illinois Tornadoes
Storm interaction - a focus of Project VORTEX-II (2009)

Jewett and Wilhelmson - NCSA

Source: Brian Jewett

Automa2cally Triggered Forecasts 
h>p://banff.atmos.uiuc.edu/trigger/ 

Week in Review – Opportunities Abound
•  Use of multicore technology and accelerators form the basis for

most petascale computing over the next decade
•  Core counts today on the largest systems exceed 50,000
•  Cache friendly codes will perform best on most systems – i.e. there

are many flops per memory fetch
•  Hybrid programming (e.g. using OpenMP on the SMP and MPI

across SMPs) may boost performance for some applications
•  Fault – tolerance: remember to checkpoint your data or implement a

fault tolerance schema
•  Analysis and visualization may need to be done inline – as a

simulation proceeds – if the data volume being produced is
voluminous (petabytes)

•  Document your code
•  Instrument your code for debugging and performance analysis

Scaling to the Petascale – Workshop Review – August 7, 2009

Why and When to Use Charm++ and AMPI 

40

•  When you need automa2c 
dynamic load balancing 

•  Automa2c overlap of 
computa2on / communica2on 

•  Parallel Composi2on:  
–  If you are composing mul2ple 

parallel modules  

–  Charm++ can interleave their 
execu2on, overlapping idle 2me 

•  Automa2c fault tolerance 
–  Caveat: if the machine/scheduler 

doesn’t kill a job when a node fails 

•  Mature, scalable system, with support 
for interac2ve debugging, live 
visualiza2on, performance tools,  

•  Charm++: is C++ programming, 
but can interface with Fortran 

•  AMPI: C, C++, Fortran 
–  Gets most benefits of Charm+

+ for MPI programs 

–  Currently requires a small 
conversion effort on some 
machines (automated on 
many machines) 

8/19/09 SciDAC-08 41

Migratable Objects (aka Processor Virtualiza2on) 

User View

System implementation

Programmer: [Over] decomposition
into virtual processors

Runtime: Assigns VPs to processors

Enables adaptive runtime strategies

Implementations: Charm++, AMPI

•  Software engineering
–  Number of virtual processors can be

independently controlled
–  Separate VPs for different modules

•  Message driven execution
–  Adaptive overlap of communication
–  Predictability :

•  Automatic out-of-core
•  Prefetch to local stores

–  Asynchronous reductions
•  Dynamic mapping

–  Heterogeneous clusters
•  Vacate, adjust to speed, share

–  Automatic checkpointing
–  Change set of processors used
–  Automatic dynamic load balancing
–  Communication optimization

Benefits

Why Use Libraries: The Reality For DGEMM

•  N=100
•  1818 MF (1.1ms) – great performance compared to core peak

performance

•  N=1000
•  335 MF (6s) – should be ~1 s based on core peak

•  What this tells us:
•  Obvious expression of algorithms are not transformed into

leading performance
•  Compilers do not magically solve many performance problems
•  We need to understand in detail the system architecture we are

working on to write fast code (e.g. effectively use the cache and
network structure of the system) to the degree we can control it

Faster (Better Algorithms) Often Available in
Libraries

•  Modern algorithms can provide significantly greater performance
•  Example: Solving systems of linear equations

•  For most of the history of computing, as much of an
improvement in performance in solving systems of linear
equations arising from PDEs came from better algorithms as
from faster hardware

•  From Gauss – Seidel to MultiGrid solvers

Higher Level Parallel I/O Libraries Are Important

•  Without careful consideration, I/O can dominate your wall
clock time

•  Scientific applications may use significant I/O capabilities
in preparing data for initializing a simulation, for
checkpointing or other fault tolerant schema, and for
writing out data to analyze and visualize later

•  netCDF and HDF5 are two popular “higher level” I/O
libraries
•  Abstract away details of file layout
•  Provide standard, portable file formats
•  Include metadata describing contents

44

Blue Waters Partnership
http://www.ncsa.illinois.edu/BlueWaters/

Scaling to the Petascale – Workshop Review – August 7, 2009

Credit: © 2007 JupiterImages Corporation

Giga-

Tera-

Peta- (Bytes, Flop/s)

Exa-

Zetta-

Blue Waters Computing System

Scaling to the Petascale – Workshop Review – August 7, 2009

System Attributes Blue Waters*
Vendor IBM
Processor IBM Power7
Sustained Performance (PF) ~1
SMP size ≥16
Number of Processor Cores (GB) >200,000
Memory per core ≥2
Amount of Disk Storage (PB) >10
Amount of Archival Storage (PB) >500
External Bandwidth (Gbps) 100-400

* Reference petascale computing system (no accelerators).

Blue Waters Computing System

•  Be capable of optimized simultaneous multithreading
•  Be capable of vector multimedia extension with four or

more floating-point operations per cycle.
•  Feature multiple levels of cache (private L1 and L2

caches for each core and an L3 shared cache)
•  Support 10 or more data streams
•  Provide an integrated network interconnect with

significantly reduced latency and increased bandwidth.
•  Allow overlapping of computation with I/O and node

communication through RDMA technology

Imaginations unbound

Blue Waters Computing System

•  System software:
•  IBM's LoadLeveler for resource management
•  Blue Waters software will include Fortran, Co-Array

Fortran, C/C++, and UPC compilers
•  GPFS file system and software

•  Applications libraries:
•  MASS, ESSL, and Parallel ESSL math libraries
•  MPI I/O
•  VisIt (parallel visualization)

Imaginations unbound

Blue Waters Computing System

•  Programming models and environments:
•  MPI and MPI2
•  OpenMP for shared memory
•  Partitioned Global Address Space languages
•  Low-level active messaging layer
•  Debugging tools
•  HPC and HPCS Performance Toolkits
•  The CHARM++ and Cactus frameworks
•  Eclipse-based application framework to support

development

Imaginations unbound

Petascale Computing – Expertise needed in
•  Application algorithms: serial and parallel, non-numeric and numeric

algorithms, libraries, shared memory techniques, hybrid method tuning,
SIMD/vectorization.

•  System hardware: architecture, cache use, instruction-level parallelism,
communication/synchronization topology, I/O.

•  System software: operating systems, compilers, performance tools, MPI/
OpenMP, debuggers, job scheduling, file systems, archiving, system check
pointing, dynamic reconfiguration, fault recovery, code development
environments.

•  Performance analysis: understanding software/hardware interaction,
identifying current performance bottlenecks and projecting future
performance, optimizing and measuring performance.

•  Modeling and projection: application and algorithm analysis and
developing models of performance to explain current or future performance.

•  Optimization and benchmarking: software development
and :enhancement, measuring and verifying performance and correctness.

•  Application simulation expertise in simulation methodology, including
execution-driven, trace-driven, whole system, and network simulation.

Scaling to the Petascale – Workshop Review – August 7, 2009

Pathways to Blue Waters Workshop:
Communication Intensive Algorithms and Applications

•  Held at NCSA last October
•  Attended by nearly 100 researchers from universities and other

organizations
•  Goals

•  To identify key challenges/issues in scaling applications efficiently to >200,000 cores
•  To learn about and discuss different communication fabrics and programming strategies

for efficiently using them
•  To gain a better understanding of algorithm/application communication needs and to

identify programming strategies for dealing with them
•  To identify I/O performance issues and potential solutions
•  To identify issues and associated strategies for debugging and running very large

applications
•  To encourage communication and sharing among groups preparing for sustained

petascale computing

•  Answers to a questionnaire reveals a diversity of responses and the need
to think carefully how to best modify or develop peta capable codes

Scaling to the Petascale – Workshop Review – August 7, 2009

What programming and scripting languages
do you most commonly use?

•  Fortran 77, 90, 95
•  C/C++
•  Perl
•  Python C/C++
•  Shell scripting
•  APIs such as OpenMP and

MPI
•  Bash

•  Super Instruction Assembly
Language (SIAL)

•  Ruby
•  Tcl
•  xml
•  MATLAB and Star-P

What math or statistical library routines do
you most commonly use?

•  BLAS (DGEMM)
•  FFTW, FFTW3 (3d FFT)
•  PETSc
•  Linear algebra, nonlinear

equation solvers,
differential-algebraic
equation solvers

•  appspack.
•  Intel MKL
•  LAPACK
•  SCALAPACK
•  ESSL
•  PESSL
•  GSL

•  HYPRE
•  NAG
•  A++/P++
•  Overture
•  SPRNG Parallel Random

Number Generator
•  IBM optimized math intrinsic

libraries (mass,massv)
•  ARPACK
•  MUMPS
•  SuperLU
•  PARPACK
•  IMSL

What communication libraries do you most
commonly use?

•  MPI
•  OpenMP
•  MPI+
•  SciDAC API library QMP
•  GA
•  ARMCI
•  mixed-mode MPI +
•  Pthreads
•  Intels TBB
•  Charm++
•  PNNL Global Arrays (GA)

What performance tools do you most
commonly use?

•  RDTSC cycle counter
instruction

•  Tau
•  MPITrace
•  PAPI
•  IPM
•  cachegrind
•  Vampir
•  Vtune
•  hpmcount
•  PERI
•  Gprof

•  lcaperf
•  Profiling tools from

PETSc
•  Hpm
•  Shark
•  Osiris has timing

(MPI_Wtime) in the code
•  MPIP
•  Jumpshot
•  CrayPAT

What debugging tools do you most
commonly use?

•  Objdump coupled with output from exceptions
•  Printf
•  TotalView
•  gdb
•  Visual studio for single processor
•  dbx
•  Eclipse
•  valgrind
•  cscope
•  Objdump
•  Super Instruction Processor (SIP) Tools
•  DDT

Petascale Code Development
•  Codes need to run on a variety of systems and therefore good code

design and choice of algorithms is important (e.g. isolate parts of a code
as much as possible that will require changes when moving from one
system to another)

•  Code test suites are important for validating model results
•  Code writing skills need to be mastered over time
•  Code development for petascale systems takes time – think and design

before you write code
•  Avoid barriers whenever you can
•  Ensure that data is moved with large messages whenever possible
•  Code debugging

•  be patient and get a good night’s sleep if you are tired
•  Sometimes it helps to start with the code and check the algorithms by writing them

down from the code

•  Admonition: learn from those who have gone before – you are not
alone!

Scaling to the Petascale – Workshop Review – August 7, 2009

Organizers
Support staff at all sites
Presenters
Attendees

•  For coming
•  For good questions
•  For working hard at the hands-on exercises

Scaling to the Petascale – Workshop Review – August 7, 2009

