
Presentation to the:
Virtual School for ComputationalVirtual School for Computational

Science and Engineering

Scaling to Petascale: Concepts & Beyond
Scaling to the Present and FutureScaling to the Present and Future

Thomas Sterling
Arnaud and Edwards Professor of Computer Sciencep

Louisiana State University

Visiting Associate, California Institute of Technology
S ODistinguished Visiting Scientist, Oak Ridge National Laboratory

CSRI Fellow, Sandia National Laboratory

August 3 2009

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 1

August 3, 2009

Topics
• HPC Applications
• Petaflops Systemsp y
• Enabling Technologies and Trends
• HPC Architectures
• Scaling Factors
• Sources of Performance Degradation

P ll l P i M d l C d• Parallel Programming Models – Condor
• Parallel Programming Models - MPI
• Parallel Programming Models – OpenMP• Parallel Programming Models – OpenMP
• Scaling to a Thousand Petaflops

2

Aerial & Satellite of Hurricane Katrina

3

Example of Global Climate Model Simulation
Precipitable Water (gray scale) and Precipitation Rate (orange)

Animation courtesy of NCAR SCD Visualization and Enabling Technologies SectionAnimation courtesy of NCAR SCD Visualization and Enabling Technologies Section

4

The!U.S.!is!an!official!partner!in!ITER

International
Thermonuclear
ExperimentalExperimental
Reactor

• European Union
• Japan
• United States
• Russia
• Korea
• China

• 500 MW fusion output
• Cost: $5-10 B
• To begin operation in scale

2015

5

Molecular Dynamics

6

Topics
• HPC Applications
• Petaflops Systemsp y
• Enabling Technologies and Trends
• HPC Architectures
• Scaling Factors
• Sources of Performance Degradation

P ll l P i M d l C d• Parallel Programming Models – Condor
• Parallel Programming Models - MPI
• Parallel Programming Models OpenMP• Parallel Programming Models – OpenMP
• Scaling to a Thousand Petaflops

7

Road Runner
• First supercomputer to reach sustained 1 PFLOPS

performance and current #1 on TOP500
• First hybrid supercomputer (Cell+Opteron)First hybrid supercomputer (Cell Opteron)
• System information:

– 296 racks on 5,200 sq.ft. footprint
– 18 connected units with 180 nodes each
– 1.46 PFLOPS peak, 1.1 PFLOPS Rmax

– 6,480 AMD Opteron processors
– 12,960 IBM PowerXCell 8i processors
– 101 TB memory
– 216 System x3755 I/O nodes

26 288 port ISR2012 Infiniband 4x DDR switches– 26 288-port ISR2012 Infiniband 4x DDR switches
– 2.5 MW power consumption

• Tri-blade compute node:
– Two QS22 blades (Cell) and one LS21 blade (Opteron)
– Cell blades host four 3.2 GHz processors with aggregate peak p gg g p

of 435.2 DP GFLOPS
– Opteron blade contains 2 dual-core 1.8 GHz Opterons 2210

delivering peak of 14.4 GFLOPS
– Every Opteron core and Cell processor uses 4 GB memory (32

GB per node)

ORNL Jaguar (Cray XT 5)

• Second sustained PFLOPS machine (#2 on TOP500)
• System overview• System overview

– Cray XT4 and XT5 nodes over shared network (SION)
– 284 cabinets in 5,800 sq.ft. floorspace
– 1.38 PFLOPS peak, 1.06 PFLOPS Rmax (XT5 only)
– 26,604 compute nodes with over 181,000 cores

362 TB– 362 TB memory
– Cray Seastar2+ interconnect configured as 3-D torus
– 374 TB/s interconnect bandwidth (XT5)
– 10 PB of RAID6 storage with 240+44 GB/s bandwidth respectively

from 214 XT5 and 116 XT4 I/O nodes

P 6 9 MW li id li (XT)– Power: 6.95 MW, liquid cooling (XT5)
• XT5 node specifications

– Two quad-core 2356 Barcelona Opterons at 2.3 GHz
– Peak performance of 73.6 GFLOPS
– 16GB ECC DDR2-800 SDRAM16GB ECC DDR2 800 SDRAM
– 6 port Seastar2+ ASIC, 9.6 GB/s per port

FZJ JUGENE (IBM BG/P)
• Most powerful BG/P system (#3 in TOP500)
• System information:

– 72 racks with 130 m2 footprint
– 73,728 compute nodes with 294,912 processors
– 1.0 PFLOPS peak, 825.5 TFLOPS Rmax

– 144 TB memoryy
– Multiple interconnects: 3-D torus, scalable collective

network and fast barrier network
– 600 I/O nodes
– 1 PB of storage at 16 GB/sg
– Power: 2.5 MW (35 kW per rack)

• Node specification:
– 4 PowerPC 450 cores at 850 MHz

D l DP FPU– Dual DP FPUs per core
– 2 GB memory
– 32-bit mode operation

Topics
• HPC Applications
• Petaflops Systems
• Enabling Technologies and Trends
• HPC Architectures
• Scaling Factors
• Sources of Performance Degradation

P ll l P i M d l C d• Parallel Programming Models – Condor
• Parallel Programming Models - MPI
• Parallel Programming Models OpenMP• Parallel Programming Models – OpenMP
• Scaling to a Thousand Petaflops

11

Where Does Performance Come From?
• Device Technology

– Logic switching speed and device density
– Memory capacity and access timey p y
– Communications bandwidth and latency

• Computer Architecture
– Instruction issue rateInstruction issue rate

• Execution pipelining
• Reservation stations
• Branch prediction
• Cache management

– Parallelism
• Operations per cycle per processor

– Instruction level parallelism (ILP)
– Vector processing

• Processors per node
• Number of nodes in a system

12

u be o odes a syste

Moore’s Law

13

Microprocessor Clock Speed

14

The SIA ITRS Roadmap

100,000
MB per DRAM Chip

1 000

10,000
MB per DRAM Chip
Logic Transistors per Chip (M)
uP Clock (MHz)

100

1,000

1

10

19
97

19
99

20
01

20
03

20
06

20
09

20
12

Year of Technology Availability

1

15

Year of Technology Availability

The Memory Wall

1000

500

oRatio

100

1000

(n
s)

200

300

400

to
 C

P
U

 R
at

io

Memory Access Time
Ratio

1

10

Ti
m

e
(

0

100

200

M
em

or
y

CPU Time

1997 1999 2001 2003 2006 2009

X-Axis

0.1

CPU Clock Period (ns)
Memory System Access Time

Ratio

THE WALL

16

THE WALL

Microprocessors no longer realize the
full potential of VLSI technologyp gy

1e+7

1e+4
1e+5
1e+6

Perf (ps/Inst)
Linear (ps/Inst)

1e+1
1e+2
1e+3

30:1

1 000 1

1 3
1e-2
1e-1
1e+0 1,000:1

30,000:1

1e-4
1e-3

1980 1990 2000 2010 2020

17

Topics
• HPC Applications
• Petaflops Systems
• Enabling Technologies and Trends
• HPC Architectures
• Scaling Factors
• Sources of Performance Degradation

P ll l P i M d l C d• Parallel Programming Models – Condor
• Parallel Programming Models - MPI
• Parallel Programming Models OpenMP• Parallel Programming Models – OpenMP
• Scaling to a Thousand Petaflops

18

The Evolution of HPC

1949
Edsac

1976
Cray!1

1996
T3E

1991
Intel!Delta 2003

Cray!X1

1959
IBM!7094

2006
Blue!Gene/L

1 103 106 109 1012 1015

KiloOPS MegaOPS GigaOPS TeraOPS PetaOPSOne!OPS

Edsac

1823 1951
Univac!1

1982
Cray!XMP

1988
Cray!YMP

1964
CDC!6600

1823!
Babbage!Difference!

Engine

1997
ASCI!Red

2001
Earth!

Simulator

1943
Harvard!
Mark!1

2008
Roadrunner

19

Top 500 List

20

Top 500: System Architecture

21

TSUBAME – A Cluster

22

SMP Node Diagram
M
P
L1

M
P
L1

M
P
L1

M
P
L1

Legend!:!
MP : MicroProcessor

L2 L2

L3

L2 L2

L3

MP!:!MicroProcessor
L1,L2,L3!:!Caches
M1..!:!Memory!Banks
S!:!Storage

M1 M2 Mn"1

NIC!:!Network!Interface!Card

Controller
S JTAG

PCI"e
Controller

S
NIC NIC

USB
Peripherals
Ethernet

23

NIC NIC

Comparison of Opteron and Xeon SMP Systems

24

Source: http://www.devx.com/amd/Article/17437

Levels of the Memory Hierarchy
Capacity
Access Time U L l

CPU!Registers
100s!Bytes
<1s ns

Access!Time
Cost

Registers

Staging
Xfer!Unit

Upper!Level
faster

<1s!ns

Cache
10s"100s!K!Bytes
1"10!ns
$10/ MByte

Cache

Instr.!Operands prog./compiler
1"8!bytes

$10/!MByte

Main!Memory
M!Bytes
100ns" 300ns
$1/ MByte

Memory

Blocks
cache!cntl
8"128!bytes

$1/!MByte

Disk
10s!G!Bytes,!10!ms!
(10 000 000 ns) Disk

Pages
OS
512"4K!bytes

(10,000,000!ns)
$0.0031/!MByte

Tape
infinite

i

Disk

T

Files
user/operator
Mbytes

L L l

Larger

25

sec"min
$0.0014/!MByte

Tape Lower!Level

Copyright!2001,!UCB,!David!Patterson

Multi-Core
M ti ti f M lti C• Motivation for Multi-Core

– Exploits improved feature-size and density
– Increases functional units per chip (spatial efficiency)
– Limits energy consumption per operation
– Constrains growth in processor complexity

• Challenges resulting from multi-core
– Relies on effective exploitation of multiple-thread

parallelism
N d f ll l ti d l d ll l• Need for parallel computing model and parallel
programming model

– Aggravates memory wall
• Memory bandwidth

– Way to get data out of memory banks
– Way to get data into multi-core processor array

• Memory latency
• Fragments (shared) L3 cache

– Pins become strangle point
• Rate of pin growth projected to slow and flattenRate of pin growth projected to slow and flatten
• Rate of bandwidth per pin (pair) projected to grow slowly

– Requires mechanisms for efficient inter-processor
coordination

• Synchronization
M t l l i

26

• Mutual exclusion
• Context switching

Heterogeneous Multicore Architecture

• Combines different types of processors
– Each optimized for a different operational modality

• Performance > Nx better than other N processor typesPerformance > Nx better than other N processor types
– Synthesis favors superior performance

• For complex computation exhibiting distinct modalities
• Conventional co-processors

– Graphical processing units (GPU)
– Network controllers (NIC)
– Efforts underway to apply existing special purpose

t t l li ticomponents to general applications
• Purpose-designed accelerators

– Integrated to significantly speedup some critical aspect
of one or more important classes of computationof one or more important classes of computation

– IBM Cell architecture
– ClearSpeed SIMD attached array processor

27

Data Center Total Concurrency

1.E+09

1.E+10

Billion-way concurrency

1.E+07

1.E+08

cu
rr

ec
nc

y

1.E+05

1.E+06

To
ta

l C
on

c

Million-way concurrency

1.E+03

1.E+04

Thousand-way concurrency
1.E 03

1/1/96 1/1/00 1/1/04 1/1/08 1/1/12 1/1/16 1/1/20

Top 10 Top System Top 1 Trend
Historical Exa Strawman Evolutionary Light Nodey g
Evolutionary Heavy Node

Courtesy of Peter Kogge, UND

Data Center Performance Projections

1 E+09

1.E+10

Exascale

1.E+08

1.E+09 Exascale

Lightweight

1 E+06

1.E+07

G
Fl

op
s

Heavyweight

g g

1.E+05

1.E+06

1.E+04

1/1/04 1/1/08 1/1/12 1/1/16 1/1/20

But not at 20 MW!
Courtesy of Peter Kogge, UND

Topics
• HPC Applications
• Petaflops Systems
• Enabling Technologies and Trends
• HPC Architectures
• Scaling Factors
• Sources of Performance Degradation

P ll l P i M d l C d• Parallel Programming Models – Condor
• Parallel Programming Models - MPI
• Parallel Programming Models OpenMP• Parallel Programming Models – OpenMP
• Scaling to a Thousand Petaflops

30

Key Terms and Concepts
• Scalable Speedup: Relative reduction of execution time of a fixed

size workload through parallel execution

processorsNontimeexecution
processoroneontimeexecutionSpeedup

!

• Scalable Efficiency : Ratio of the actual performance to the best
possible performance.

Efficiency ! execution _ time_on _one_ processor
(execution _ time_on _multiple_ processors" number_of _ processors)

31

Strong Scaling, Weak Scaling

e)

em
 S

iz
e

ze
 /

no
d

Strong Scaling
Weak Scalingl P

ro
bl

e

ar
ity

 (s
iz

Weak Scaling

To
ta

G
ra

nu
la

Machine Scale (# of nodes)

G

32

Machine Scale (# of nodes)

Strong Scaling, Weak Scaling
• Capability

• Primary scaling is decrease in response time proportional to increase in
resources applied

• Single job, constant size – scaling proportional to machine size
C ti• Cooperative

• Single job, (different nodes working on different partitions of the same job)
• Job size scales proportional to machine
• Granularity per node is fixed

C• Capacity
• Primary scaling is increase in throughput proportional to increase in resources

applied
• Decoupled concurrent tasks, increasing in number of instances – scaling

proportional to machine

Capacity CapabilityCooperative
Single Job

proportional to machine.

Workload Size Scaling

33

Weak Scaling Strong Scaling

Topics
• HPC Applications
• Petaflops Systems
• Interlude: the System “hour-glass” Stack
• Enabling Technologies and Trends
• HPC Architectures
• Scaling Factors

So rces of Performance Degradation• Sources of Performance Degradation
• Parallel Programming Models – Condor
• Parallel Programming Models MPI• Parallel Programming Models - MPI
• Parallel Programming Models – OpenMP
• Scaling to a Thousand Petaflopsg p

34

Sources of Performance Degradation
SLOWSLOW

• Starvation
– Not enough work to do due to insufficient parallelism or poor load

balancing among distributed resources
• Latency

– Waiting for access to memory or other parts of the system
• Overhead

– Extra work that has to be done to manage program concurrency
and parallel resources the real work you want to perform

• Waiting for Contention
– Delays due to fighting over what task gets to use a shared

resource next. Network bandwidth is a major constraint.

35

j

Ideal Speedup Example
W

w1 w1024 2101 1024

Units!:!steps

220
P256

210 210 210 210

ProcessorsP1 #!
i

iwW

210 210 210 210

212

T(1)=220

T(28)=212

2022
8

12 2
2
2

!!Speedup

Efficiency ! 220

! 20 !1

36

Efficiency !
212 " 28 ! 2 !1

Amdahl’s Law

start end

TO

$
$
$

T
T
T

F

A

O

daccelerate becan n that computatio ofportion of time
ncomputatio dacceleratefor time

ncomputatio daccelerate-nonfor time
TF

start end

TA

!
$
$
$

TTS
S
f
g

AO
appliedon acceleratin with computatio of up speed

daccelerate be n tocomputatio daccelerate-non offraction
ncomputatio ofportion dacceleratefor gain eperformancpeak TF/g

% & "''
(

)
**
+

,
-".!

!

T

T
g
fTfT

TTf

O

OOA

OF

1

% &

),
!

"''
(

)
**
+

,
-".

!

f
S

T
g
fTf

TS
OO

O

1

1

37

''
(

)
**
+

,
-.
g
ff1

Overhead

P
Wwi !#!

P

iwW
Assumption!:!Workload!is!

infinitely!divisible
P

wvT -!

!i 1

P
P
P

W
W

W
W

T
TS
P

1

//
/

!
"

!0
-

!!
11

v!=!overhead
w!=!work!unit

P
WWPP

TP // ---- 11 W!=!Total!work
Ti =!execution!time!
with!i!processors
P # processors

vv ww

W=4v+4wW=4v+4w

P!=!#!processors

38

W=4v+4wW=4v+4w

Amdahl’s Law with Overhead

start end

TO

n

i
FiF

v

tT

$

! #
segment work daccelerate of overhead

tF

start end

TA
tF tFtF

% & OOA

n

i
i

vnT
g
fTfT

vV

"-"-".!

!$ #

1

 workdacceleratefor overhead totalv!+!tF/g

% & OO

O

A

O

vnT
g
fTf

T
T
TS

g

"-"-".
!!

1

1

% &
OT
vn

g
ff

S
"

--.
!

1

1

39

Cache Performance

cyclecount

III
TCPIIT

-!

""!

MEM
MEM

ALU
ALU

MEMALUcount

CPI
I
ICPI

I
ICPI

III

"''
(

)
**
+

,
-"''

(

)
**
+

,
!

-!

countcount II '
(

*
+

'
(

*
+

T!=!total!execution!time
Tcycle =!time!for!a!single!processor!cycle
Icount =!total!number!of!instructions
IALU =!number!of!ALU!instructions!(e.g.!register!– register)

CPIMEM =!average!cycles!per!memory!instruction
rmiss =!cache!miss!rate
rhit =!cache!hit!rate
CPIMEM"MISS =!cycles!per!cache!miss
CPI =cycles per cache hitIMEM =!number!of!memory!access!instructions!(!e.g.!load,!store)

CPI!=!average!cycles!per!instructions
CPIALU =!average!cycles!per!ALU!instructions

CPIMEM"HIT=cycles!per!cache!hit
MALU =!instruction!mix!for!ALU!instructions
MMEM =!instruction!mix!for!memory!access!instruction

40

Cache Performance

MISSMEMMISSHITMEMMEM CPIrCPICPI "-! ..

% & % &% &1 2 cycleMISSMEMMISSHITMEMMEMALUALUcount

MISSMEMMISSHITMEMMEM

TCPIrCPIMCPIMIT ""-"-""! ..

T!=!total!execution!time
T ti f i l l

CPIMEM =!average!cycles!per!memory!instruction
r i = cache miss rateTcycle =!time!for!a!single!processor!cycle

Icount =!total!number!of!instructions
IALU =!number!of!ALU!instructions!(e.g.!register!– register)
IMEM =!number!of!memory!access!instructions!(!e.g.!load,!store)
CPI!=!average!cycles!per!instructions

rmiss !cache!miss!rate
rhit =!cache!hit!rate
CPIMEM"MISS =!cycles!per!cache!miss
CPIMEM"HIT=cycles!per!cache!hit
MALU =!instruction!mix!for!ALU!instructions
M i t ti i f i t tiCPIALU =!average!cycles!per!ALU!instructions
MMEM =!instruction!mix!for!memory!access!instruction

41

Cache Performance: Example

1
102

10
10

11

"!

!

MEM

count

CPI
I
I

8.0
10
8

10
108

108

11

10

10

!!
"

!!

"!.!

ALU
ALU

MEMcountALU

IM

III

1
100

5.0
1

!

!
!

.MISSMEM

cycle

ALU

C
CPI

nsT
CPI

2.0
10

102

1010

11

10

11

!
"

!!
count

MEM
MEM

count
ALU

I
IM

I

1!.HITMEMCPI

9.0
"-!

!hitA

CPIrCPICPI
r 5.0

"-!
!

MISSMEMBMISSHITMEMBMEM

hitB

CPIrCPICPI
r

sec150
105))112.0()18.0((10

11100)9.01(1
1011

!
"""-""!

!".-!
"-!

.

....

A

MISSMEMAMISSHITMEMAMEM

T

CPIrCPICPI

105))512.0()18.0((10
51100)5.01(1

1011 """-""!

!".-!
"-

.

....

B

MISSMEMBMISSHITMEMBMEM

T

CPIrCPICPI

sec150! sec550!

42

Performance: Locality
• Temporal Locality is a property that if a program accesses a

memory location, there is a much higher than random probability
that the same location would be accessed again.that the same location would be accessed again.

• Spatial Locality is a property that if a program accesses a
memory location, there is a much higher than random probability
that the nearby locations would be accessed soon.that the nearby locations would be accessed soon.

• Spatial locality is usually easier to achieve than temporal locality
• A couple of key factors affect the relationship between locality

and scheduling :and scheduling :
– Size of dataset being processed by each processor
– How much reuse is present in the code processing a chunk of

iterationsiterations.

43

Topics
• HPC Applications
• Petaflops Systems
• Enabling Technologies and Trends
• HPC Architectures
• Scaling Factors
• Sources of Performance Degradation

Parallel Programming Models Condor• Parallel Programming Models – Condor
• Parallel Programming Models - MPI
• Parallel Programming Models OpenMP• Parallel Programming Models – OpenMP
• Scaling to a Thousand Petaflops

44

Management Middleware: Condor

Condor MatchMaker
• MatchMaker, a crucial part of the Condor

architecture, uses the job description classAd
provided by the user and matches the Job to the
best resource based on the Machine description
classAdclassAd

• MatchMaking in Condor is performed in 4 steps :
1. Job Agent (A) and resources (R) advertise themselves.
2. Matchmaker (M) processes the known classAds and

generates pairs that best match resources and jobs
3. Matchmaker informs each party of the job-resource pair of

their prospective match.
4. The Job agent and resource establish connection for further

i (M t h k l l i thi t thprocessing. (Matchmaker plays no role in this step, thus
ensuring separation between selection of resources and
subsequent activities)

Src : Douglas Thain, Todd Tannenbaum, and Miron Livny, "Distributed
Computing in Practice: The Condor Experience" Concurrency and

Computation: Practice and Experience, Vol. 17, No. 2-4, pages 323-356,
February-April, 2005.

http://www.cs.wisc.edu/condor/doc/condor-practice.pdf

45

Management Middleware: Condor
Condor Problem Solvers
• Master-Worker (MW) is a problem solving system that is

useful for solving a coarse grained problem of Masterg g p
indeterminate size such as parameter sweep etc.

• The MW Solver in Condor consists of 3 main components :
work-list, a tracking module, and a steering module. The
work-list keeps track of all pending work that master needs

w1 w..N
work-list keeps track of all pending work that master needs
done. The tracking module monitors progress of work
currently in progress on the worker nodes. The steering
module directs computation based on results gathered and
the pending work-list and communicates with thethe pending work-list and communicates with the
matchmaker to obtain additional worker processes.

• DAGMan is used to execute multiple jobs that have
dependencies represented as a Directed Acyclic Graph

h h d d h j b d dwhere the nodes correspond to the jobs and edges
correspond to the dependencies between the jobs.
DAGMan provides various functionalities for job monitoring
and fault tolerance via creation of rescue DAGs.

46

Condor: A Walkthrough of Condor commands

condor_status : provides current pool status
condor_q : provides current job queue
condor_submit : submit a job to condor pool
condor_rm : delete a job from job queue

47

Topics
• HPC Applications
• Petaflops Systems
• Enabling Technologies and Trends
• HPC Architectures
• Scaling Factors
• Sources of Performance Degradation
• Parallel Programming Models Condor• Parallel Programming Models – Condor
• Parallel Programming Models - MPI
• Parallel Programming Models OpenMP• Parallel Programming Models – OpenMP
• Scaling to a Thousand Petaflops

48

Basic MPI Calls
• In review, the 6 main MPI calls:

– MPI_Init_
– MPI_Finalize
– MPI_Comm_size
– MPI_Comm_rank
– MPI_Send

MPI R– MPI_Recv
• Include MPI Header file

#incl de “mpi h”– #include “mpi.h”
• Basic MPI Datatypes

MPI INT MPI FLOAT– MPI_INT, MPI_FLOAT, ….

49

Example : communicators

#include!"mpi.h"
#include!<stdio h>#include!<stdio.h>

int main(!int argc,!char!*argv[])
{ Determines the rank of the currentDetermines the rank of the current

int rank,!size;
MPI_Init(!&argc,!&argv);
MPI_Comm_rank(!MPI_COMM_WORLD,!&rank);
MPI Comm size(!MPI COMM WORLD !&size);

Determines!the!rank!of!the!current!
process!in!the!communicator"group!

MPI_COMM_WORLD

Determines!the!rank!of!the!current!
process!in!the!communicator"group!

MPI_COMM_WORLD

Determines!the!size!of!the!
communicator"group!

Determines!the!size!of!the!
communicator"group!MPI_Comm_size(!MPI_COMM_WORLD,!&size);

printf("Hello,!World!!from!%d!of!%d\n",!rank,!size!);
MPI_Finalize();
return!0;

MPI_COMM_WORLDMPI_COMM_WORLD

…!
Hello,!World!!from!1!of!8
Hello !World!!from!0!of!8

…!
Hello,!World!!from!1!of!8
Hello !World!!from!0!of!8} Hello,!World!!from!0!of!8
Hello,!World!!from!5!of!8
…

Hello,!World!!from!0!of!8
Hello,!World!!from!5!of!8
…

50

Example : Communicator & Rank
• Compiling :

mpicc!"o!hello2!hello2.c

• Result :
p

Hello !World!!from!4!of!8Hello,!World!!from!4!of!8
Hello,!World!!from!3!of!8
Hello,!World!!from!1!of!8
H ll !W ld!!f !0! f!8Hello,!World!!from!0!of!8
Hello,!World!!from!5!of!8
Hello,!World!!from!6!of!8
Hello,!World!!from!7!of!8
Hello,!World!!from!2!of!8

51

MPI : Point to Point Communication primitives
• The basic communication mechanism of MPI between a pair of

processes in which one process is sending data and the other process
receiving the data, is called “point to point communication”
Message passing in MPI program is carried o t b 2 main MPI f nctions• Message passing in MPI program is carried out by 2 main MPI functions
– MPI_Send – sends message to a designated process
– MPI_Recv – receives a message from a process

• Each of the send and recv calls is appended with information to the data pp
that needs to be exchanged between application programs

• The message envelope consists of the following information
– The rank of the receiver

The rank of the sender– The rank of the sender
– A tag
– A communicator

• The source argument is used to distinguish messages received from
diff tdifferent processes

• Tag is user-specified int that can be used to distinguish messages from a
single process

52

Collective Calls
• A communication pattern that encompasses all processes

within a communicator is known as collective communication
MPI has several collective communication calls the most• MPI has several collective communication calls, the most
frequently used are:
– Synchronization

B i• Barrier
– Communication

• Broadcast
Gather & Scatter• Gather & Scatter

• All Gather
– Reduction

• Reduce• Reduce
• AllReduce

53

Topics
• HPC Applications
• Petaflops Systems
• Enabling Technologies and Trends
• HPC Architectures
• Scaling Factors
• Sources of Performance Degradation
• Parallel Programming Models Condor• Parallel Programming Models – Condor
• Parallel Programming Models - MPI
• Parallel Programming Models – OpenMP• Parallel Programming Models – OpenMP
• Scaling to a Thousand Petaflops

54

OpenMP: Basic Constructs
T i k lib ti i C/C dd

OpenMP!Execution!Model!(FORK/JOIN):

S i l P (h d)

To!invoke!library!routines!in!C/C++!add!

#include!<omp.h>!
near!the!top!of!your!code

Sequential!Part!(master!thread)

Parallel!Region!(FORK!:!group!of!threads)

Sequential Part (JOIN:master thread)Sequential!Part!(JOIN:!master!thread)

Parallel!Region!(FORK: group!of!threads)

Sequential Part (JOIN :master thread)

C / C++ :

Sequential!Part!(JOIN!:!master!thread)

C / C :
#pragma omp parallel {

parallel block
} /* omp end parallel */

55

OpenMP for directive
• for directive helps share iterations of a loop

between a group of threads
• If nowait is specified then the threads do not wait

for synchronization at the end of a parallel loop

fork

do!/!for!loopy p p
• The schedule clause describes how iterations of

a loop are divided among the threads in the team
(discussed in detail in the next few slides)

join

#pragma!omp!parallel
{

p=5;
! !f

p=5 p=5 p=5…
#pragma!omp!for

for!(i=0;!i<24;!i++)
x[i]=y[i]+p*(i+3)

…

i!=
0,4

i=!
5,9

i=!
20,24…

x[i]=
y[i]+

x[i]=
y[i]+

x[i]=
y[i]+…

…!!!!
}!/*!omp!end!parallel!*/

… … …

56

OpenMP sections directive
• sections directive is a non iterative work sharing

construct.
• Independent section of code are nested within a

sections directive
• It specifies enclosed section of codes between

fork

• It specifies enclosed section of codes between
different threads

• Code enclosed within a section directive is
executed by a thread within the pool of threads join

#pragma!omp!parallel!private(p)
{
#pragma!omp!sections
{{ a=…;{{

b=…;}
#pragma!omp!section
{ p=…;
q=…;}

a!= p!= x!=

#pragma!omp!section
{ x=…;
y=…;}

}!/*!omp!end!sections */

b!= q!= y!=

57

}!/*!omp!end!parallel!*/

OpenMP critical directive:
Explicit Synchronizationp y

• Race conditions can be avoided by controlling access to shared variables by
allowing threads to have exclusive access to the variables

• Exclusive access to shared variables allows the thread to atomically perform y p
read, modify and update operations on the variable.

• Mutual exclusion synchronization is provided by the critical directive of
OpenMP

• Code block within the critical region defined by critical /end critical directives• Code block within the critical region defined by critical /end critical directives
can be executed only by one thread at a time.

• Other threads in the group must wait until the current thread exits the critical
region. Thus only one thread can manipulate values in the critical region.

fork

i i l i

int!x
x=0;
#pragma!omp!parallel!shared(x)
{

join

" critical!region{
#pragma!omp!critical

x!=!2*x!+!1;
}!/*!omp!end!parallel!*/

58

OpenMP: Reduction
• performs reduction on shared variables in list based on the operator provided.
• for C/C++ operator can be any one of :

+ * ^ | || & or &&– +, , -, ^, |, ||, & or &&
– At the end of a reduction, the shared variable contains the result obtained upon

combination of the list of variables processed using the operator specified.

sum!=!0.0

sum=0

i=0,4 i=5,9 i=10,14 i=15,19

#pragma!omp!parallel!for!
reduction(+:sum)
f !(i 0 !i! !20 !i)

sum=.. sum=.. sum=.. sum=..

#sum

for!(i=0;!i!<!20;!i++)
sum!=!sum!+!(a[i]!*!b[i]);

sum=0

59

Topics
• HPC Applications
• Petaflops Systems
• Enabling Technologies and Trends
• HPC Architectures
• Scaling Factors
• Sources of Performance Degradation
• Parallel Programming Models Condor• Parallel Programming Models – Condor
• Parallel Programming Models - MPI
• Parallel Programming Models – OpenMPParallel Programming Models OpenMP
• Scaling upto a 1000X Petaflops

60

In Review

• 3 classes of parallel/distributed computing
– Capacity
– Capability– Capability
– Cooperative

• 3 classes of parallel architectures (respectively)
– Loosely coupled clusters and workstation farmsLoosely coupled clusters and workstation farms
– Tightly coupled vector, SIMD, SMP
– Distributed memory MPPs (and some clusters)

• 3 classes of parallel execution models (respectively)p (p y)
– Workflow, throughput, SPMD
– Multithreaded with shared memory semantics
– Communicating Sequential Processes

• 3 classes of programming models
– Condor
– MPI

O MP– OpenMP

61

Optical switch

Interconnect

System Nodes

Conventional node

. . .
System Nodes

Cabinet level
interconnectFull system (1k racks)

Storage

System node
(board/blade)

Cabinet
(19” rack)

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 62

(board/blade) ()

Cabinet
Organization 4x 8U compute cagesg p g

1x 1U optical switch
3x 4U secondary storage array

Peak performance 1.18 PFLOPS
Memory 192 TB
Secondary storage (effective) 2.25 PB

Compute Cage
Blades per cage 14
Blade housing width 30 mm
Blade type 12x system nodes

1x spare system node or conventional node
1x cage-level optical switch
Storage Array

Raw capacity 960 TB
Effective capacity 768 TB
Number of disks 80
Disk type 3.5”, 12 TB, 7200 RPM
Redundancy RAID 6, 8+2 parity

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 63

Stream Processors

Memory Banks

EMPs

Stream Processors

Optical Network

Processor Module Processor Node
(locality)

Processor NodeSystem Node
Processor modules 8
Peak performance 1536 GFLOPS
Total memory 256 GB
Aggregate streaming performance 128 GFLOPS
Carrier dimensions 58.4x86.2 mm

Processor nodes 16
Peak performance 24.5 TFLOPS
Memory 4 TB
Board dimensions 450x330 mm
Fraction of board area for processor

d ith l l i t t
75%

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 64

nodes with local interconnect

Memory

AGAS
Optical Links

EMPMemory
Bank

Network
On

Chip

Stream
Processor

Stream

EMPMemory
Bank

Processor

Parcel Interface

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 65

Speedup with Memory Acceleratorsp p y
103

1
2
4
8

PIM Nodes

102

in

16
32
64
128
256

fo
rm

an
ce

 G
ai

ce
 G

ai
n

101P
er

f
P

er
fo

rm
an

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
100

% Workload in PIM

66

% Workload in PIM

PIM Workload

Processor Module
Organization 1 TSV stack (low power density)

1 standalone chip (high power density), side by side
Aggregate performance 192 GFLOPS
Aggregate EMP performance 64 GFLOPS
Aggregate streaming performance 128 GFLOPS
Number of EMPs 128
Number of streaming processors 8
M it 32 GBMemory capacity 32 GB
TSV stack footprint 150 mm2

Standalone chip footprint 150 mm2

Combined silicon outline 14.6x20.6 mm
Silicon outline to package outline area
ratio

90%
ratio
Package dimensions 15.3x21.7 mm

EMP
Clock frequency 512 MHz
Floating-point op. issue per cycle 1
Silicon area 0.5 mm2

Streaming Processor
Clock frequency 2 GHz
Peak floating-point ops per cycle 8

DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY 67

Active Global Address Space (AGAS)
• Distributed
• Assumes no coherence between localities
• User variables
• Synchronization variables and objects

Threads as first class objects• Threads as first-class objects
• Moves virtual named elements in physical space
• Parcel sets (but not parcels!)Parcel sets (but not parcels!)
• Process

– First class object
– Specifies a broad task
– Defines a distributed environment

• Spans multiple localities

68

p p
• Need not be contiguous

Parcel Structure

Transport / network layer
protocol wrappers

destination payloadaction continuations CRC

p pp

h d ilheader trailer

PX Parcel

Parcels may utilize underlying communication protocol fields to minimize
the message footprint (e.g. destination address, checksum)

69DEPARTMENT OF COMPUTER SCIENCE @
LOUISIANA STATE UNIVERSITY

Latency Hiding with Parcels
Idle Time with respect to Degree of Parallelismp g

Idle Time/Node
(number of nodes in black)

7.E+05

8.E+05

1
2 4 8

16 32 64 128 256

4 E 05

5.E+05

6.E+05

de
 (c

yc
le

s)

Process
Transaction

2 E+05

3.E+05

4.E+05

Id
le

 ti
m

e/
no

0.E+00

1.E+05

2.E+05

February 8, 2005

Thomas
Sterling -

TACC70

1 8 64 4 32 25
6 2 16 12

8 1 8 64 4 32 25
6 2 16 12

8 1 8 64 4 32 25
6 2 16 12

8

Parallelism Level (parcels/node at time=0)

