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« Cost: $5-10B

» To begin operation in
2015

1
1
-
i
1

Tl




Molecular Dynamics

Simdation Analyza View Effeds {Oplions Wmdow Help

Farbogd [
r:..-l.::'d .-..-. =
Farked ik

Obj all |SimOMT | 5103 Aloms




Topics

HPC Applications

Petaflops Systems

Enabling Technologies and Trends

HPC Architectures

Scaling Factors

Sources of Performance Degradation
Parallel Programming Models — Condor
Parallel Programming Models - MPI
Parallel Programming Models — OpenMP
Scaling to a Thousand Petaflops




Road Runner o

»  First supercomputer to reach sustained 1 PFLOPS
performance and current #1 on TOP500

»  First hybrid supercomputer (Cell+Opteron)

+  System information:
— 296 racks on 5,200 sq.ft. footprint
— 18 connected units with 180 nodes each
— 1.46 PFLOPS peak, 1.1 PFLOPS R,
— 6,480 AMD Opteron processors
— 12,960 IBM PowerXCell 8i processors
— 101 TB memory
— 216 System x3755 1/0 nodes
— 26 288-port ISR2012 Infiniband 4x DDR switches
— 2.5 MW power consumption

* Tri-blade compute node:

— Two QS22 blades (Cell) and one LS21 blade (Opteron)

—  Cell blades host four 3.2 GHz processors with aggregate peak
of 435.2 DP GFLOPS

—  Opteron blade contains 2 dual-core 1.8 GHz Opterons 2210
delivering peak of 14.4 GFLOPS

—  Every Opteron core and Cell processor uses 4 GB memory (32
GB per node)

HSDC
Connactor
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ORNL Jaguar (Cray XT 5) | 1

Cray XT4 and XT5 nodes over shared network (SION)

— 284 cabinets in 5,800 sq.ft. floorspace

— 1.38 PFLOPS peak, 1.06 PFLOPS R,,, (XT5 only)

— 26,604 compute nodes with over 181,000 cores

— 362 TB memory

—  Cray Seastar2+ interconnect configured as 3-D torus

— 374 TB/s interconnect bandwidth (XT5)

— 10 PB of RAIDG6 storage with 240+44 GB/s bandwidth respectively
from 214 XT5 and 116 XT4 I/O nodes

— Power: 6.95 MW, liquid cooling (XT5) "

° ifi 1 AMD | .
XT5 node specifications Opteron”|g
—  Two quad-core 2356 Barcelona Opterons at 2.3 GHz
—  Peak performance of 73.6 GFLOPS
— 16GB ECC DDR2-800 SDRAM

. AMD
— 6 port Seastar2+ ASIC, 9.6 GB/s per port Opteron”

i
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FzJ JUGENE (IBMBG/P) L.

* Most powerful BG/P system (#3 in TOP500)

« System information:
— 72 racks with 130 m? footprint
— 73,728 compute nodes with 294,912 processors
— 1.0 PFLOPS peak, 825.5 TFLOPS R,
— 144 TB memory

— Multiple interconnects: 3-D torus, scalable collective
network and fast barrier network

— 600 1/0 nodes
— 1 PB of storage at 16 GB/s
— Power: 2.5 MW (35 kW per rack)

* Node specification:
— 4 PowerPC 450 cores at 850 MHz
— Dual DP FPUs per core
— 2 GB memory
— 32-bit mode operation

. M) JOLICH
ﬂ J FORSCHUNGSZENTRUM
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Where Does Performance Come From? il

« Device Technology

— Logic switching speed and device density

— Memory capacity and access time

— Communications bandwidth and latency

« Computer Architecture

— Instruction issue rate
» Execution pipelining
» Reservation stations
» Branch prediction
« Cache management

— Parallelism

» Operations per cycle per processor
— Instruction level parallelism (ILP)
— Vector processing

* Processors per node
* Number of nodes in a system

"5:?1, !:!!;' Lt
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Moore’s Law T

Moore’s Law
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Microprocessor Clock Speed le
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he SIA ITRS Roadmap I
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The Memory Wall

~
LSL)
500
Ratio o
1000 400 £
i
100 300 7
) k O
O
c ANN -
g 10 ‘.. 200 g
= . 100 5
1 CPU Time ° =
- 0
0.1 :
1997 1999 2001 2003 2006 20.09
X-Axis .
B CPU Clock Period (ns) M Ratio .
] Memory System Access Time .
Lsu 16

CENTER FOR COMPUTATION



Microprocessors no longer realize the 47
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Top 500 List i
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Top 500: System Architecture .
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TSUBAME — A Cluster BN, e

O
huth

DOEMNMEALLNL BlueGene/L - eServer Blue Gene Solution

United States [BA

Forschungszentrum Juelich (FZJ) JUGENE - Blue Gene/P Solution
Germany [BM
SGI/New Mexico Computing Applications Center -

e SG| Altix ICE 8200, Xeon quad core 3.0 GHz
3 :_Nh il a3
United States
EKA - Cluster Platform 3000 BL460c, Xeon 53xx 3GHz,

) Infiniband
o= Hewlett-Packard

Computational Research Laboratories, TATA SONS

) I Cluster Platform 3000 BL460c, Xeon 53xx 2.66GHz,
5 Government Agency Infiniband :

Sweden

Hewlett-Packard

Red Storm - Sandia/ Cray Red Storm, Opteron 2.4 GHz
dual core

Cray Inc.

6 NNSA/Sandia National Laboratories
United States

Oak Ridge Mational Laboratory Jaguar - Cray XT4/XT3

United States Cray Inc.

8 IBM Thomas J. Watzon Research Center BGW - eServer Blue Gene Solution
United States [BM
NERSC/LBNL Franklin - Cray XT4, 2.6 GHz
United States Cray Inc.
Stony Brook/BNL, Mew York Centar for Computational N Yok Blia - s2ariar Bhs Gane Sokifion
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United States
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SMP Node Diagram [
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Legend :

MP : MicroProcessor
L1,L2,L3 : Caches

M1.. : Memory Banks

S : Storage

NIC : Network Interface Card
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JTAG
Ethernet
Peripherals
USB
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Comparison of Opteron and Xeon SMP Systems fﬁ;ﬁ

AMD Opteron Processor-based 2P Worlstation Intel Xeon Processor-based 2P Workstation
HyperTrarsport™ Technalagy Dusl PCI Express SU Graphing
Link Has Arale Bandasdth Srimers Receree Full & Agpregate System Intel Intel
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Levels of the Memory Hierarchy ﬁf

Capacity LS
?ccess Time Staging Upper Leve
ost Xfer Unit 4 faster
CPU Registers .
100s Bytes RegISte IS
<lsns 1 prog./compiler
Instr. Operands 3 gpytes
Cache M
10s-100s K Bytes
110 ns Cache
$10/ MByte 3 Block cache cntl
8-128 bytes
Main Memory v OCKS !
M Bytes
100ns- 300ns Memory
$1/ MByte
A 0OS
Pa ges 512-4K bytes
Disk =
10s G Bytes, 10 ms .
(10,000,000 ns) DISk
$0.0031/ MByte . user/operator il
Files Mbytes
Tape \4 La rge r
infinite
sec-min Lower Level
. $0.0014/ MByte Tape
j i
LSl
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Multi-Core

* Motivation for Multi-Core
— Exploits improved feature-size and density
— Increases functional units per chip (spatial efficiency)
— Limits energy consumption per operation
— Constrains growth in processor complexity
« Challenges resulting from multi-core
— Relies on effective exploitation of multiple-thread
parallelism

* Need for parallel computing model and parallel
programming model

— Aggravates memory wall

* Memory bandwidth
— Way to get data out of memory banks
— Way to get data into multi-core processor array

+ Memory latency

* Fragments (shared) L3 cache
— Pins become strangle point

» Rate of pin growth projected to slow and flatten

» Rate of bandwidth per pin (pair) projected to grow slowly
— Requires mechanisms for efficient inter-processor

coordination
» Synchronization
* Mutual exclusion

. » Context switching
e

)0 nm Dual Core
\MD64 Process:

CPU 1

L2 Cache
(for CPU 1)

AMD Athlon™ 64 X2
Dual-Core Processor Design

i
LSU
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« Combines different types of processors

— Each optimized for a different operational modality
» Performance > Nx better than other N processor types

— Synthesis favors superior performance
* For complex computation exhibiting distinct modalities

« Conventional co-processors

— Graphical processing units (GPU)

— Network controllers (NIC)

— Efforts underway to apply existing special purpose

components to general applications

» Purpose-designed accelerators

— Integrated to significantly speedup some critical aspect
of one or more important classes of computation

— IBM Cell architecture
— ClearSpeed SIMD attached array processor

Rambus RRAC

X § JaaH 3 & LN :
. i) k' 3
i R
O controller

£

L
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Data Center Total Concurrency
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Data Center Performance Projections ji
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Key Terms and Concepts {5,

Scalable Speedup: Relative reduction of execution time of a fixed
size workload through parallel execution

execution time on _one __ processor

Speedup = . _
execution time on_ N _ processors

Scalable Efficiency : Ratio of the actual performance to the best
possible performance.

execution time on _one__ processor

Efficiency = : . -
(execution _time on _multiple processors x number of _processors)

31
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Strong Scaling, Weak Scaling i

LSU
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Strong Scaling, Weak Scaling .

« Capability
* Primary scaling is decrease in response time proportional to increase in
resources applied

« Single job, constant size — scaling proportional to machine size

» Cooperative
« Single job, (different nodes working on different partitions of the same job)
« Job size scales proportional to machine
« Granularity per node is fixed

« Capacity
. Prirr|1_a3/ scaling is increase in throughput proportional to increase in resources
applie

« Decoupled concurrent tasks, increasing in number of instances — scaling
proportional to machine.

Capacity f Cooperativef Capability

| Single Job
i€ ' >
| |
Worklbad Size Scalipg

— !
| |

. 1 1 *

Weak Scaling Strong Scaling

33



Topics

HPC Applications

Petaflops Systems

Interlude: the System “hour-glass” Stack
Enabling Technologies and Trends

HPC Architectures

Scaling Factors

Sources of Performance Degradation
Parallel Programming Models — Condor
Parallel Programming Models - MPI
Parallel Programming Models — OpenMP
Scaling to a Thousand Petaflops

34



Sources of Performance Degradation il
SLOW

« Starvation

— Not enough work to do due to insufficient parallelism or poor load
balancing among distributed resources

 Latency

— Waiting for access to memory or other parts of the system
* Overhead

— Extra work that has to be done to manage program concurrency
and parallel resources the real work you want to perform
« Waiting for Contention

— Delays due to fighting over what task gets to use a shared
resource next. Network bandwidth is a major constraint.




Ideal Speedup Example J
LS
W
E: o W1024 ]‘ 210
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Amdahl’s Law e

TO
AN
start F L Jq end
~
T Te
A To = time for non - accelerated computation
start ( | 1 W end T4 = time for accelerated computation
I ' ’ I Tr = time of portion of computation that can be accelerated
T/8 g =peak performance gain for accelerated portion of computation
f =fraction of non - accelerated computation to be accelerated
10 — T —— T S =speed up of computation with acceleration applied
g= 2 - S =To/Ti
8 h- = 5
g= 10 f=Tr/To
g= 20 i
= 50 —
_g' 6 32100 TA—(I—f)xT0+£—JxT0
@ g
(.% 4 S _ TO
(1- f)xTo+ [fijo
2
— — - g
e 1
0 L 1 1 L L L 1 1 1 S =~
0 01 02 03 04 05 06 07 08 09 1 1_f+(fJ
f g
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Overhead I
LS
Assumption : Workload is
P 1/4 . . ..
_ W= infinitely divisible
w ;wl =5
I'=v+w
I W+v W P P v = overhead
S:TP:W :W = PXV: y w = work unit
—+v —4+Vv 1+ 1+W— W = Total work
P P 4 ﬁ) T, = execution time

with i processors
P = # processors

W=4v+4w

LSU 3 8
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Cache Performance o

LS
I'= [count x CPI X T'cycle
]count o ]ALU + [MEM
— [ALU ]MEM
CPI =| 44 X CPLy, + x CPI ..,
count count
T = total execution time CPlyem = average cycles per memory instruction
T.yce = time for a single processor cycle Fmiss = Cache miss rate
| ount = total number of instructions M = Cache hit rate _
|5,y = number of ALU instructions (e.g. register — register) CPlvem-miss = cycles per cache. MISs
lviem = Number of memory access instructions ( e.g. load, store) CPIMEM-_HIT‘Cyd?S per cache h't_ _
CPI = average cycles per instructions M, , = instruction mix for ALU instructions
CPl,,, = average cycles per ALU instructions Myem = instruction mix for memory access instruction

5 40
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Cache Performance o

C1P]MEM = C'PIMEM—HIT + rMISS X C'P]MEM—MISS
I'= Icount X [(MALU X C'P[ALU )+ (MMEM X (CPIMEM—H]T + rMISS X C'PIMEM—MISS ))]X 71cycle
T = total execution time CPlyem = average cycles per memory instruction
T.yce = time for a single processor cycle Mmiss = Cache miss rate
| ount = total number of instructions e = Cache hit rate _
|5,y = number of ALU instructions (e.g. register — register) CPlvem-miss = cycles per cache. MISs
lviem = Number of memory access instructions ( e.g. load, store) CPIMEM-_HIT‘Cyd?S per cache h't_ _
CPI = average cycles per instructions M, , = instruction mix for ALU instructions
CPl,,, = average cycles per ALU instructions Myem = instruction mix for memory access instruction

5 41
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Cache Performance: Example

[count = 1011
e, =2x10"
CPI,, =1

T, =0.5ns

CPI MEM ~MISS — 100
CPI MEM~HIT — 1

Phita = 0.9

CPI MEM~-A4 — CPI meM—HIT T Vviss—a CPI MEM-MISS

=1+(1-0.9)x100=11

TA = 1011 X((O-8X1)+(O.2X11)))(5)(10—10

=150sec

Ly = oo = Lpipy = 8x10"

_1,, 8x10" 8

Maw =7 o 10
count
I 2x10"
M, = ]MEM == =02
count
Vhis = 0.5

=1+(1-0.5)x100=51

=550sec

1, =10" X((O-SXI)+(0-2><51))><5><1()‘10

CPI MEM-B — CPI mev—mir T Vagss—p X CPI MEM —MISS

42



Performance: Locality ) i

Temporal Locality is a property that if a program accesses a
memory location, there is a much higher than random probability
that the same location would be accessed again.

Spatial Locality is a property that if a program accesses a

memory location, there is a much higher than random probability
that the nearby locations would be accessed soon.

Spatial locality is usually easier to achieve than temporal locality

A couple of key factors affect the relationship between locality
and scheduling :
— Size of dataset being processed by each processor

— How much reuse is present in the code processing a chunk of
iterations.
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Management Middleware: Condor il

Condor MatchMaker

« MatchMaker, a crucial part of the Condor
architecture, uses the job description classAd
provided by the user and matches the Job to the
best resource based on the Machine description
classAd

« MatchMaking in Condor is performed in 4 steps :
1. Job Agent (A) and resources (R) advertise themselves.

2. Matchmaker (M) processes the known classAds and
generates pairs that best match resources and jobs

3. Matchmaker informs each party of the job-resource pair of

their prospective match.

4. The Job agent and resource establish connection for further

processing. (Matchmaker plays no role in this step, thus
ensuring separation between selection of resources and
subsequent activities)

| Condor R

i Pool /

Matchmaker
Matchmaking Algorithm (2)

» Resource

Claiming (4)

Src : Douglas Thain, Todd Tannenbaum, and Miron Livny, "Distributed
Computing in Practice: The Condor Experience" Concurrency and
Computation: Practice and Experience, Vol. 17, No. 2-4, pages 323-356,

A
i
LSU
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A

L

Management Middleware: Condor ’ﬂéﬁ
L

Condor Problem Solvers

« Master-Worker (MW) is a problem solving system that is [ Master ]
useful for solving a coarse grained problem of

indeterminate size such as parameter sweep etc.
 The MW Solver in Condor consists of 3 main components :
work-list, a tracking module, and a steering module. The Wl |ooe | w.N

work-list keeps track of all pending work that master needs
done. The tracking module monitors progress of work
currently in progress on the worker nodes. The steering
module directs computation based on results gathered and
the pending work-list and communicates with the
matchmaker to obtain additional worker processes.

« DAGMan is used to execute multiple jobs that have
dependencies represented as a Directed Acyclic Graph
where the nodes correspond to the jobs and edges
correspond to the dependencies between the jobs.
DAGMan provides various functionalities for job monitori
and fault tolerance via creation of rescue DAGs.

+7

#{5+10}* (5+7)

=T 46
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Condor: A Walkthrough of Condor commands

condor_status : provides current pool status
condor_q : provides current job queue
condor_submit : submit a job to condor pool
condor_rm : delete a job from job queue
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Basic MPI Calls

* |n review, the 6 main MPI calls:
— MPIL_Init
— MPI_Finalize
— MPI_Comm_size
— MPI_Comm_rank
— MPI_Send
— MPI_Recv

* |nclude MPI Header file
— #include “mpi.h”

« Basic MPI| Datatypes
— MPI_INT, MPI_FLOAT, ....

49



Example : communicators S

#include "mpi.h"
#include <stdio.h>

int main( int argc, char *argv[])

{ Determines the rank of the current
int rank, size; process in the communicator-group
MPI_Init( &argc, &argv); MPI_COMM_WORLD
MPI_Comm_rank( MPI_COMM W D, &rank); Determines the size of the
. . . communicator-group
MP;_ComT_51ze( MPI_COMM_WORLD, &51ze)iﬁ MPI_COMM_WORLD
printf("Hello, World! from %d of %d\n", rank, size );
MPI Finalize();
return 0; ;I'ello, World! from 1 of 8
Hello, World! from © of 8
} Hello, World! from 5 of 8
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Example : Communicator & Rank

« Compiling :
mpicc -0 hello2 hello2.c
 Result:
Hello, World! from 4 of 8
Hello, World! from 3 of 8
Hello, World! from 1 of 8
Hello, World! from © of 8
Hello, World! from 5 of 8
Hello, World! from 6 of 8
Hello, World! from 7 of 8
Hello, World! from 2 of 8
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MPI : Point to Point Communication primitives ML
LS

The basic communication mechanism of MPI between a pair of
processes in which one process is sending data and the other process
receiving the data, is called “point to point communication’

Message passing in MPI program is carried out by 2 main MPI functions
— MPI_Send - sends message to a designated process
— MPI_Recv - receives a message from a process
Each of the send and recv calls is appended with information to the data
that needs to be exchanged between application programs
The message envelope consists of the following information
— The rank of the receiver
— The rank of the sender
— Atag
— A communicator

The source argument is used to distinguish messages received from
different processes

Tag is user-specified int that can be used to distinguish messages from a
single process

LSU 52
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Collective Calls o
LSL)

« A communication pattern that encompasses all processes
within a communicator is known as collective communication

 MPI has several collective communication calls, the most
frequently used are:
— Synchronization
* Barrier

— Communication

 Broadcast
o Gather & Scatter
« All Gather

— Reduction

 Reduce
* AllReduce
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OpenMP: Basic Constructs j

To invoke library routines in C/C++ a!a?"’
#include <omp.h>

OpenMP Execution Model (FORK/JOIN): near the top of your code
Sequential Part (master thread) H
Parallel Region (FORK : group of threads) l I J l I J [ I J [ I J l I J

Sequential Part (JOIN: master thread)

Parallel Region (FORK: group of threads) . J

C/C++:
#pragma omp parallel { [

|
parallel block - .

} I* omp end parallel */

L
L
Sequential Part (JOIN : master thread) i
-
LJ
—




OpenMP for directive JAU

* fordirective helps share iterations of a loop
between a group of threads

« If nowait is specified then the threads do not wait
for synchronization at the end of a parallel loop

« The schedule clause describes how iterations of -
a loop are divided among the threads in the team ’ Join |
(discussed in detail in the next few slides)

#pragma omp parallel v v

{ p=5 p=5 p=5
p=5; XX ]

#pragma omp for V V V

1= 1= I=

for (i=0; i<24; i++) 0,4 59 | e« | 20,24

x[1]=y[1]+p*(i+3) 2 v v

x[i]= x[i]= x[i]=

ylil+ ylil+ | ylil+

} /* omp end parallel */
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OpenMP sections directive J

* sections directive is a non iterative work sharing J
construct. f ork

* Independent section of code are nested within a

sections directive
» |t specifies enclosed section of codes between I

different threads

« Code enclosed within a section directive is
executed by a thread within the pool of threads join

#pragma omp parallel private(p) H
{

#pragma omp sections

{{ a=.; v v
b=..;}

#pragma omp section

{ qz-..;’} \ 2 v v
#pragma omp section b
{ x=.;
y=..;}
} /* omp end sections */
} /* omp end parallel */

]
o]
]
<
]

&ﬁ 57

CENTER FOR COMPUTATION
& TECHNOLOGY




OpenMP critical directive: ¢
Explicit Synchronization =7

Race conditions can be avoided by controlling access to shared variables by
allowing threads to have exclusive access to the variables

Exclusive access to shared variables allows the thread to afomically perform
read, modify and update operations on the variable.

Mutual exclusion synchronization is provided by the crifical directive of
OpenMP

Code block within the critical region defined by critical /end critical directives
can be executed only by one thread at a time.

Other threads in the group must wait until the current thread exits the critical
region. Thus only one thread can manipulate values in the critical region.

int x
X=0;

#pragma omp parallel shared(x)
{

#pragma omp critical

B - critical region

X = 2¥x + 1;
} /* omp end parallel */
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OpenMP: Reduction

« performs reduction on shared variables in list based on the operator provided.

« for C/C++ operator can be any one of :
— +* M), & or &&

LS

— At the end of a reduction, the shared variable contains the result obtained upon
combination of the list of variables processed using the operator specified.

sum = 0.0

sum=0

i=0,4 i=5,9 i=10,14 i=15,19
#pragma omp parallel for wi" sﬁa e e
reduction(+:sum) N
Ssum
for (i=0; i < 20; i++)
sum = sum + (a[i] * b[i]);
59
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In Review

3 classes of parallel/distributed computing
— Capacity
— Capability
— Cooperative
3 classes of parallel architectures (respectively)
— Loosely coupled clusters and workstation farms
— Tightly coupled vector, SIMD, SMP
— Distributed memory MPPs (and some clusters)
3 classes of parallel execution models (respectively)
— Workflow, throughput, SPMD
— Multithreaded with shared memory semantics
— Communicating Sequential Processes
3 classes of programming models
— Condor
— MPI
— OpenMP
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Full system (1k racks)

4

System node Cabinet
(board/blade) (19” rack)

Optical switch

Conventional node

Cabinet level
interconnect

Storage
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LsU
Cabinet
Organization 4x 8U compute cages
1x 1U optical switch
3x 4U secondary storage array
Peak performance 1.18 PFLOPS
Memory 192 TB
Secondary storage (effective) 2.25 PB
Compute Cage
Blades per cage 14
Blade housing width 30 mm
Blade type 12x system nodes
1x spare system node or conventional node
1x cage-level optical switch
Storage Array
Raw capacity 960 TB
Effective capacity 768 TB
Number of disks 80
Disk type 3.5”,12 TB, 7200 RPM
Redundancy RAID 6, 8+2 parity
DEPARTMENT OF COMPUTER SCIENCE @
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Stream Processors

Memory Banks

EMPs

Optical Network &

Processor Module Processor Node

(locality)

System Node Processor Node
Processor nodes 16 Processor modules 8
Peak performance 24.5 TFLOPS Peak performance 1536 GFLOPS
Memory 47TB Total memory 256 GB
Board dimensions 450x330 mm Aggregate streaming performance 128 GFLOPS
Fraction of board area for processor | 75% Carrier dimensions 58.4x86.2 mm
nodes with local interconnect
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Speedup with Memory Accelerators
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Processor Module

Organization 1 TSV stack (low power density)
1 standalone chip (high power density), side by side
Aggregate performance 192 GFLOPS
Aggregate EMP performance 64 GFLOPS
Aggregate streaming performance 128 GFLOPS
Number of EMPs 128
Number of streaming processors 8
Memory capacity 32GB
TSV stack footprint 150 mm?2
Standalone chip footprint 150 mm?
Combined silicon outline 14.6x20.6 mm
Silicon outline to package outline area 90%
ratio
Package dimensions 15.3x21.7 mm
EMP
Clock frequency 512 MHz
Floating-point op. issue per cycle 1
Silicon area 0.5 mm?2
Streaming Processor
Clock frequency 2 GHz
Peak floating-point ops per cycle 8

DEPARTMENT OF COMPUTER SCIENCE @
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Active Global Address Space (AGAS) i

Distributed

Assumes no coherence between localities

User variables

Synchronization variables and objects

Threads as first-class objects

Moves virtual named elements in physical space
Parcel sets (but not parcels!)

Process
— First class object
— Specifies a broad task

— Defines a distributed environment
« Spans multiple localities
 Need not be contiguous
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Parcel Structure T

Transport / network layer

/- protocol wrappers \

destination | action ipayloadi continuations ' CRC

header | r ) trailer

PX Parcel

Parcels may utilize underlying communication protocol fields to minimize
the message footprint (e.g. destination address, checksum)
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Latency Hiding with Parcels
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