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Introduction to MR
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Example: Interventional MRI

Real-time reconstruction is
necessary to provide feedback
to surgeon



MRI data Iin Fourier Space

e Ignoring several effects, MRI image and
signal are a Fourier transform pair
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Discretization

e Infinite dimensional variables are
Inconvenient for computation
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Finite dimensional
Image representation

Integral equation

Matrix equation



Very Large Matrix Equations

e Typical 2D images: N of p =256x256
e Typical 3D images: N of p =256x256x256

If thinking In megapixels — this is a low res camera

F Matrix entries are complex floats, so storage of matrix
(single precision):
2D: dimension of F is (256X256)? ~ 34 GB
3D: (256X256X256)? ~ 2 PB



Reconstructing Fourier Data

e Discretized Inverse Fourier Integral
e Data sampled on a rectilinear grid

7X-10X FFT Reconstruction
speedup

e Noncartesian data
28X Conjugate Phase

Reconstruction

speedup
6X Gridding
speedup Reconstruction

e Reqularized Inverse Problem

Solutions often derived by solvmg one or more
matrix inversions, e.gd.,
11X Q
speedup
/ \
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Fhd

e F — M x N matrix

e Typical M and N range from 214-224 (higher in
certain applications)

e Ordinary matrix-vector multiplication
e Complexity O(MN)
e Easily parallelized

e Matrix entries can be calculated on the fly
Lots of trigonometric function evaluations

e 28x speedup over CPU, 180 GFLOPs
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Non-Fourier MR Reconstruction
e Parallel Imaging

e Data acquired with multiple spatially diverse
Sensors

30X
': speedup

o F|eld Inhomogeneilty correction
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Summary

e Common MRI computations have been accelerated by
orders-of-magnitude using GPUs

e Enables more practical use of advanced reconstruction
algorithms to reduce scan time/image artifacts

e Key primitives: 3D convolution, 3-D histogram, sparse/Toeplitz
matrix-vector multiplication, sparse CG solver, (I) FFT

e Current challenge: To develop a common, modular
framework for GPU reconstruction of MR data (and other
Imaging modalities)

e Single framework for multi-core CPUs and many-core GPUs
e Automatic tuning and selection for each primitive

e Future work:
e Continued optimization, scaling of reconstruction algorithms
e GPU implementation of MR parameter estimation
e Support for integration into production MRI pipelines
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