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Load Balancing



Load Balancing

 Load Imbalance can severely hurt performance

* The time to completion is bound by the slowest
processor

 Hence, when dividing 121 units of work among 10
pProcessors

— 12 units to 9 processors and 13 units to 1 (simple round-
robin scheme)

— 13 units to 9 processors and 4 units to 1 (intelligent
blocking)



Load Balancing Strategies

e Static: Achieved through initial data distribution
* Dynamic
— Blocks of data which can be moved around during the
execution
— Measurement-based

— Automatic (by the runtime)



Another classification

 Balance computational load

e Balance computational as well as communication
load

— Minimize communication volume on the network

e Minimize communication traffic

— Bytes passing through each link on the network



Scalable Load Balancing

* Centralized Strategies perform better but take longer
— Memory/communication bottleneck

e Distributed Strategies are fast but have incomplete
knowledge

e Hybrid/ Hierarchical Strategies

— Allow using different strategies at different levels



Hierarchical Strategies

64K processor hierarchical tree

Level 2

Level 1

Level O

1024 Apply different strategies at each level
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References

e Trinilos (developed at Sandia):
http://trilinos.sandia.gov/

e Charm++ Load Balancing Framework:
https://charm.cs.uiuc.edu/research/ldbal/
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Topology Aware Mapping



Current Machines and their Topologies

e 3D Mesh — Cray XT3/4/5

3D Torus — Blue Gene/L, Blue Gene/P

e Fat-tree, CLOS network — Infiniband, Federation
e Kautz Graph — SiCortex

e Future Topologies?



Extra 2"_stage switch {1 | l: | l:
ports allow expansion up W[ i “ 1i_l # i

to 24 CUs

12 uplinks per
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2"_stage
switch provide
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Smaller systems

{e.g. 4 CUs) by disabling
links to other CUSs for
improved robustness
during standup &
sfabilization
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Blue Gene/P

e Midplane: smallest unit
with torus in all
dimensions: 8 x 8 x 8

e All bigger partitions
formed from this unit of
512 nodes

e |ntrepid at ANL: 40960
nodes
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Cray XT5

The full installation is a torus

Typically the batch scheduler does not allocate
cuboidal shapes

Jaguar (XT4) at ORNL: 8,064 nodes, torus dimensions
21x16x24

Jaguarpf (XT5) at ORNL: 21 x 32 x 24



Is topology important?

 For machines as large as these?
Yes.

* For all applications?
No.



Motivation

* Consider a 3D mesh/torus interconnect
 Message latencies can be modeled by
(L/B)x D + L/B
= length of flit, B = bandwidth,
D = hops, L = message size

When (L; * D) << L, first term is negligible

But in presence of contention ..
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Validation through Benchmarks



MPI Benchmarkst

 Quantification of message latencies and dependence
on hops
— No sharing of links (no contention)
— Sharing of links (with contention)

t http://charm.cs.uiuc.edu/~bhatele/phd/contention.htm

Abhinav Bhatele, Laxmikant V. Kale, An Evaluation of the Effect of Interconnect Topologies on Message
Latencies in Large Supercomputers, In Workshop on Large-Scale Parallel Processing (IPDPS), 2009.
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WOCON: No contention

A master rank sends messages to all other ranks, one
at a time (with replies)

Master

Rank
00 00 [(PXe) 0 0] Xe) 00
Ioo 00 (Xe O Of loo 00 (o Xe) (o Xe)

|
|
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Latency (us)

WOCON: Results

(L/B) x D + L/B

Latency vs. Message Size: Without Gontention (1024 nodes)

Latency vs. Message Size: Without Contention (8 x 8 x 16)

40986 ] " T lL t ' ' ' ' o 30
i essage Latency  © .
2048 % difference —+— o
1024 |- 1
512 |
256 |- -
128
64 - *
32 b 10
16 | |
8 | . °
]
‘eI ' [
2 ! | ! | I ' ' : 0

4 16 64 256 1K 4K 16K 64K 256K 1M
Message Size (Bytes)

ANL Blue Gene/P

% Difference

Latency (us)

1024 T T T T T I T I ] 30
Message Latency
512 + % difference ——— ° ] »5
256 o
128 o 720
64 o =4 15
- [ ] -
32 6 -1 10
16 ) i
sl essene’ 15
4 ! l ! | | | | 1 | | 0
4 16 64 256 1K 4K 16K 84K 256K 1M

Message Size (Bytes)

PSC XT3

August 04th, 2009 Scaling to Petascale Summer School 20

% Difference



WICON: With Contention

e Divide all ranks into pairs and everyone sends to
their respective partner simultaneously
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Latency (us)

WICON: Results

Latency vs. Message Size: With Contention (BG/P)

Latency vs. Message Size: With Contention (XT3)
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Stressing-a-link Benchmark

e Controlled Congestion
 Quantify contention effects on a particular link

(’Main RankS)
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Latency (us)

Latency vs. Message Size: With increasing contention (8 x 8 x 16) Latency vs. Message Size: With increasing contention (8 x 8 x 16)
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Equidistant-pairs Benchmark

e Pair each rank with a partner which is ‘n” hops away
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Blue Gene/P

Latency vs. Message Size: With varying hops (8 x 8 x 16)
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Cray XT3

Latency vs. Message Size: With varying hops (8 x 8 x 16)
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Can we avoid congestion?

* Yes. If we can minimize the distance each message
travels

e Solution: topology aware mapping
— Initially
— At runtime (as a part of load balancing)



Example Application: NAMD



Molecular Dynamics

A system of [charged] atoms with bonds

Use Newtonian Mechanics to find the positions and
velocities of atoms

Each time-step is typically in femto-seconds
At each time step

— calculate the forces on all atoms

— calculate the velocities and move atoms around



NAMD: NAnoscale Molecular Dynamics

* Naive force calculation is O(N?)
 Reduced to O(N logN) by calculating

— Bonded forces
— Non-bonded: using a cutoff radius

e Short-range: calculated every time step
e Long-range: calculated every fourth time-step (PME)
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NAMD'’s Parallel Design

e Hybrid of spatial and force decomposition
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Parallelization using Charm++

Patch Integration

Stati
S N N R
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Patch Integration

Bhatele, A., Kumar, S., Mei, C., Phillips, J. C., Zheng, G. & Kale, L. V., Overcoming Scaling Challenges in
Biomolecular Simulations across Multiple Platforms. In Proceedings of IEEE International Parallel and
Distributed Processing Symposium, Miami, FL, USA, April 2008.
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Communication in NAMD

e Each patch multicasts its
information to many
computes

e Each compute is a target
of two multicasts only

e Use ‘Proxies’ to send data
to different computes on
the same processor

Patch & Compute e Proxy
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Topology Aware Techniques

e Static Placement of Patches
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Topology Aware Techniques (contd.)

e Placement of computes

3D Torus

VO W A WY i W S WY G ¥
A

Patch 1

Patch 2
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Load Balancing Metrics

* Load Balance: Bring Max-to-Avg Ratio close to 1

e Communication Volume: Minimize the number of
proxies

e Communication Traffic: Minimize hop bytes

Hop-bytes = Message size X Distance traveled by
message

Agarwal, T., Sharma, A., Kale, L.V., Topology-aware task mapping for reducing communication contention on
large parallel machines, In Proceedings of IEEE International Parallel and Distributed Processing Symposium,

Rhodes Island, Greece, April 2006.
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Results: Hop-bytes
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Results: Performance

16
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Abhinav Bhatele and Laxmikant V. Kale. Dynamic Topology Aware Load Balancing Algorithms for MD
Applications. In Proceedings of International Conference on Supercomputing, 2009.
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OpenAtom

* Ab-Initio Molecular Dynamics code
e Communication is static and structured

e Challenge: Multiple groups of objects with conflicting
communication patterns
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Parallelization using Charm++

Transpose

Reduction

GSpace

Vil

RSpace Multicast Density

Transpose
PairCalculator

Eric Bohm, Glenn J. Martyna, Abhinav Bhatele, Sameer Kumar, Laxmikant V. Kale, John A. Gunnels, and
Mark E. Tuckerman. Fine Grained Parallelization of the Car-Parrinello ab initio MD Method on Blue
Gene/L. IBM J. of R. and D.: Applications of Massively Parallel Systems, 52(1/2):159-174, 2008.

Abhinav Bhatele, Eric Bohm, Laxmikant V. Kale, A Case Study of Communication Optimizations on 3D
Mesh Interconnects, To appear in Proceedings of Euro-Par (Topic 13 - High Performance Networks), 2009.

August 04th, 2009 Scaling to Petascale Summer School 44



Topology Mapping of Chare Arrays

Density

3D Torus of
the machine
k : 5 5 Planes

RealSpace

States‘ block_size

Plane-wise
communication

PairCalculator

State-wise Rectangular
communication RealSpace Prisms Gspagce
perpendicular to Prisms

Gspace Prisms

Planes

Joint work with Eric J. Bohm
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Results on Blue Gene/P (ANL)
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Results on XT3 (Bigben@PSC)
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Tools and Techniques



Topology Aware Mapping

 Broadly three requirements
— Processor topology graph
— Object communication graph
— Efficient and scalable mapping algorithms



Application Characteristics

e Computation-bound applications

e Communication-heavy applications
— Latency tolerant: NAMD
— Latency sensitive: OpenAtom



Topology Manager APIT

 The application needs information such as
— Dimensions of the partition
— Rank to physical co-ordinates and vice-versa
e TopoManager: a uniform API
— On BG/L and BG/P: provides a wrapper for system calls

— On XT3/4/5, there are no such system calls
— Provides a clean and uniform interface to the application

t http://charm.cs.uiuc.edu/~bhatele/phd/topomgr.htm



TopoMgrAP|

e getDImMNX(), getDimNY(), getDimNZ(), getDimNT()
 rankToCoordinates(), coordinatesToRank()
e getHopsBetweenRanks()



Object Communication Graph

e Obtaining this graph:
— Manually
— Profiling (e.g. IBM’s HPCT tools)
— Charm++’s instrumentation framework

* Visualizing the graph
e Pattern matching



Communication Scenarios

Static Regular Graph: 3D Stencil

— Structured Mesh applications such as MILC
— POP, MILC, WRF

Static Irregular Graph: Unstructured Mesh
applications such as UMT2K

Dynamic Communication Graph: MD codes,
Unstructured Mesh codes with AMR

Use pattern matching to get an idea



Simple 2D/3D Graph

 Many science applications have a near-neighbor
communication pattern
— POP: Parallel Ocean Program
— MILC: MIMD Lattice Computation
— WRF: Weather Research and Forecasting
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Folding of 2D/3D to 3D

For more objects than
Processors:

- Blocking Techniques
SMP nodes ?

Hao Yu, I-Hsin Chung and Jose Moreira, Topology
Mapping for Blue Gene/L Supercomputer, In
Proceedings of the ACM/IEEE Supercomputing
Conference, 2006

T

7 x

(a) Fold the Y dimension of a 2D gnd onto Z

dimension

&
X
(b) Name 3D to 3D folding
—'ﬁ < = _L _' 69

(c) Dilation 2 3D to 3D folding
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Irregular Graphs

e Heuristic Techniques
— Pairwise Exchanges
— Greedy Strategies



Automatic Mapping Framework

Obtain the communication graph (previous run, at
runtime)

Pattern matching to identify communication patterns

Apply heuristic techniques for different scenarios to
arrive at a mapping solution automatically



Summary

Scalable Load Balancing: Hierarchical
Machines of Petascale Era: ‘Exploitable’ Topologies

MPI Benchmarks show:

— Contention for the same links by different messages slows all of
them down

Topology aware mapping to avoid contention
— Carefully see if application would benefit from this

Tools and Techniques
— TopoMgrAPI
— Obtaining the object graph: Instrumentation
— Pattern Matching
— Techniques: Folding, Heuristics



o))

Summary

. Topology is important again
. Even on fast interconnects such as Cray

. In presence of contention, bandwidth occupancy effects message

latencies significantly

. Increases with the number of hops each message travels

. Topology Manager API: A uniform API for IBM and Cray machines
. Different algorithms depending on the communication patterns
. Eventually, an automatic mapping framework
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