Load Balancing and Topology Aware Mapping for Petascale Machines

Abhinav S Bhatele
Parallel Programming Laboratory, Illinois

Outline

- Scalable Load Balancing
- Current Supercomputers and their Topologies
- Topology Aware Mapping
 - Motivation
 - Examples
 - Tools and Techniques

Load Balancing

Load Balancing

- Load Imbalance can severely hurt performance
- The time to completion is bound by the slowest processor
- Hence, when dividing 121 units of work among 10 processors
 - 12 units to 9 processors and 13 units to 1 (simple roundrobin scheme)
 - 13 units to 9 processors and 4 units to 1 (intelligent blocking)

Load Balancing Strategies

- Static: Achieved through initial data distribution
- Dynamic
 - Blocks of data which can be moved around during the execution
 - Measurement-based
 - Automatic (by the runtime)

Another classification

- Balance computational load
- Balance computational as well as communication load
 - Minimize communication volume on the network
- Minimize communication traffic
 - Bytes passing through each link on the network

Scalable Load Balancing

- Centralized Strategies perform better but take longer
 - Memory/communication bottleneck
- Distributed Strategies are fast but have incomplete knowledge
- Hybrid/ Hierarchical Strategies
 - Allow using different strategies at different levels

Hierarchical Strategies

64K processor hierarchical tree

References

- Trinilos (developed at Sandia): http://trilinos.sandia.gov/
- Charm++ Load Balancing Framework: https://charm.cs.uiuc.edu/research/ldbal/

Topology Aware Mapping

Current Machines and their Topologies

- 3D Mesh Cray XT3/4/5
- 3D Torus Blue Gene/L, Blue Gene/P
- Fat-tree, CLOS network Infiniband, Federation
- Kautz Graph SiCortex
- Future Topologies?

RoadRunner

Blue Gene/P

- Midplane: smallest unit with torus in all dimensions: 8 x 8 x 8
- All bigger partitions formed from this unit of 512 nodes
- Intrepid at ANL: 40960 nodes

Cray XT5

- The full installation is a torus
- Typically the batch scheduler does not allocate cuboidal shapes
- Jaguar (XT4) at ORNL: 8,064 nodes, torus dimensions
 21 x 16 x 24
- Jaguarpf (XT5) at ORNL: 21 x 32 x 24

Is topology important?

For machines as large as these?
 Yes.

For all applications?
 No.

Motivation

- Consider a 3D mesh/torus interconnect
- Message latencies can be modeled by

$$(L_f/B) \times D + L/B$$

 L_f = length of flit, B = bandwidth,

D = hops, L = message size

When (L_f * D) << L, first term is negligible

Validation through Benchmarks

MPI Benchmarks†

- Quantification of message latencies and dependence on hops
 - No sharing of links (no contention)
 - Sharing of links (with contention)

† http://charm.cs.uiuc.edu/~bhatele/phd/contention.htm

Abhinav Bhatele, Laxmikant V. Kale, **An Evaluation of the Effect of Interconnect Topologies on Message Latencies in Large Supercomputers**, In *Workshop on Large-Scale Parallel Processing (IPDPS)*, 2009.

WOCON: No contention

 A master rank sends messages to all other ranks, one at a time (with replies)

WOCON: Results

$$(L_f/B) \times D + L/B$$

ANL Blue Gene/P

PSC XT3

WICON: With Contention

 Divide all ranks into pairs and everyone sends to their respective partner simultaneously

Read theightor: NN

WICON: Results

ANL Blue Gene/P

PSC XT3

Stressing-a-link Benchmark

- Controlled Congestion
- Quantify contention effects on a particular link

ANL Blue Gene/P

PSC XT3

Equidistant-pairs Benchmark

Pair each rank with a partner which is 'n' hops away

Blue Gene/P

4K

16K

64K

256K

1M

1K

Message Size (Bytes)

256

16

64

Cray XT3

Can we avoid congestion?

- Yes. If we can minimize the distance each message travels
- Solution: topology aware mapping
 - Initially
 - At runtime (as a part of load balancing)

Example Application: NAMD

Molecular Dynamics

- A system of [charged] atoms with bonds
- Use Newtonian Mechanics to find the positions and velocities of atoms
- Each time-step is typically in femto-seconds
- At each time step
 - calculate the forces on all atoms
 - calculate the velocities and move atoms around

NAMD: NAnoscale Molecular Dynamics

- Naïve force calculation is O(N²)
- Reduced to O(N logN) by calculating
 - Bonded forces
 - Non-bonded: using a cutoff radius
 - Short-range: calculated every time step
 - Long-range: calculated every fourth time-step (PME)

NAMD's Parallel Design

Hybrid of spatial and force decomposition

Parallelization using Charm++

Bhatele, A., Kumar, S., Mei, C., Phillips, J. C., Zheng, G. & Kale, L. V., **Overcoming Scaling Challenges in Biomolecular Simulations across Multiple Platforms**. In *Proceedings of IEEE International Parallel and Distributed Processing Symposium*, Miami, FL, USA, April 2008.

Communication in NAMD

- Each patch multicasts its information to many computes
- Each compute is a target of two multicasts only
- Use 'Proxies' to send data to different computes on the same processor

Topology Aware Techniques

Static Placement of Patches

Topology Aware Techniques (contd.)

Placement of computes

Load Balancing Metrics

- Load Balance: Bring Max-to-Avg Ratio close to 1
- Communication Volume: Minimize the number of proxies
- Communication Traffic: Minimize hop bytes

Hop-bytes = Message size X Distance traveled by message

Agarwal, T., Sharma, A., Kale, L.V., **Topology-aware task mapping for reducing communication contention on large parallel machines,** In *Proceedings of IEEE International Parallel and Distributed Processing Symposium*, Rhodes Island, Greece, April 2006.

Results: Hop-bytes

Results: Performance

Abhinav Bhatele and Laxmikant V. Kale. **Dynamic Topology Aware Load Balancing Algorithms for MD Applications**. In Proceedings of International Conference on Supercomputing, 2009.

OpenAtom

- Ab-Initio Molecular Dynamics code
- Communication is static and structured
- Challenge: Multiple groups of objects with conflicting communication patterns

Parallelization using Charm++

Eric Bohm, Glenn J. Martyna, Abhinav Bhatele, Sameer Kumar, Laxmikant V. Kale, John A. Gunnels, and Mark E. Tuckerman. Fine Grained Parallelization of the Car-Parrinello ab initio MD Method on Blue Gene/L. IBM J. of R. and D.: Applications of Massively Parallel Systems, 52(1/2):159-174, 2008.

Abhinav Bhatele, Eric Bohm, Laxmikant V. Kale, **A Case Study of Communication Optimizations on 3D Mesh Interconnects**, To appear in *Proceedings of Euro-Par (Topic 13 - High Performance Networks)*, 2009.

Topology Mapping of Chare Arrays

Plane-wise communication

State-wise communication

Joint work with Eric J. Bohm

Results on Blue Gene/P (ANL)

Results on XT3 (Bigben@PSC)

Tools and Techniques

Topology Aware Mapping

- Broadly three requirements
 - Processor topology graph
 - Object communication graph
 - Efficient and scalable mapping algorithms

Application Characteristics

- Computation-bound applications
- Communication-heavy applications
 - Latency tolerant: NAMD
 - Latency sensitive: OpenAtom

Topology Manager API†

- The application needs information such as
 - Dimensions of the partition
 - Rank to physical co-ordinates and vice-versa
- TopoManager: a uniform API
 - On BG/L and BG/P: provides a wrapper for system calls
 - On XT3/4/5, there are no such system calls
 - Provides a clean and uniform interface to the application

[†] http://charm.cs.uiuc.edu/~bhatele/phd/topomgr.htm

TopoMgrAPI

- getDimNX(), getDimNY(), getDimNZ(), getDimNT()
- rankToCoordinates(), coordinatesToRank()
- getHopsBetweenRanks()

Object Communication Graph

- Obtaining this graph:
 - Manually
 - Profiling (e.g. IBM's HPCT tools)
 - Charm++'s instrumentation framework
- Visualizing the graph
- Pattern matching

Communication Scenarios

- Static Regular Graph: 3D Stencil
 - Structured Mesh applications such as MILC
 - POP, MILC, WRF
- Static Irregular Graph: Unstructured Mesh applications such as UMT2K
- Dynamic Communication Graph: MD codes,
 Unstructured Mesh codes with AMR
- Use pattern matching to get an idea

Simple 2D/3D Graph

- Many science applications have a near-neighbor communication pattern
 - POP: Parallel Ocean Program
 - MILC: MIMD Lattice Computation
 - WRF: Weather Research and Forecasting

WRF Communication Graph

Folding of 2D/3D to 3D

For more objects than processors:

- Blocking Techniques SMP nodes ?

Hao Yu, I-Hsin Chung and Jose Moreira, **Topology Mapping for Blue Gene/L Supercomputer**, In *Proceedings of the ACM/IEEE Supercomputing Conference*, 2006

(a) Fold the Y dimension of a 2D grid onto Z dimension

(b) Naive 3D to 3D folding

(c) Dilation 2 3D to 3D folding

Irregular Graphs

- Heuristic Techniques
 - Pairwise Exchanges
 - Greedy Strategies

Automatic Mapping Framework

- Obtain the communication graph (previous run, at runtime)
- Pattern matching to identify communication patterns
- Apply heuristic techniques for different scenarios to arrive at a mapping solution automatically

Summary

- Scalable Load Balancing: Hierarchical
- Machines of Petascale Era: 'Exploitable' Topologies
- MPI Benchmarks show:
 - Contention for the same links by different messages slows all of them down
- Topology aware mapping to avoid contention
 - Carefully see if application would benefit from this
- Tools and Techniques
 - TopoMgrAPI
 - Obtaining the object graph: Instrumentation
 - Pattern Matching
 - Techniques: Folding, Heuristics

Summary

- 1. Topology is important again
- 2. Even on fast interconnects such as Cray
- 3. In presence of contention, bandwidth occupancy effects message latencies significantly
- 4. Increases with the number of hops each message travels
- 5. Topology Manager API: A uniform API for IBM and Cray machines
- 6. Different algorithms depending on the communication patterns
- 7. Eventually, an automatic mapping framework

Acknowledgements:

- 1. Argonne National Laboratory: Pete Beckman, Tisha Stacey
- 2. Pittsburgh Supercomputing Center: Chad Vizino, Shawn Brown
- 3. Oak Ridge National Laboratory: Patrick Worley, Donald Frederick
- 4. Grants: DOE Grant B341494 funded by CSAR, DOE grant DE-FG05-08OR23332 through ORNL LCF, and a NIH Grant PHS 5 P41 RR05969-04 for Molecular Dynamics

References:

- 1. Abhinav Bhatele, Laxmikant V. Kale, **Quantifying Network Contention on Large Parallel Machines**, *Parallel Processing Letters (Special issue on Large-Scale Parallel Processing)*, 2009
- 2. Abhinav Bhatele, Laxmikant V. Kale, **Benefits of Topology-aware Mapping for Mesh Topologies**, *Parallel Processing Letters (Special issue on Large-Scale Parallel Processing), Vol: 18 Issue:4, Pages: 549-566*, 2008

E-mail: bhatele, kale @ illinois.edu

Webpage: http://charm.cs.illinois.edu

Thanks!